

Jerusalem

A COMPUTATIONAL ACQUISITION MODEL FOR MULTI MODAL WORD LEARNING

² University of Melbourne

Uri Berger¹, Gabriel Stanovsky¹, Omri Abend¹, Lea Frermann²

Introduction Tasks learned in early infant language acquisition:

Noun identification: as an ear	ly cue for syntactic structure
--------------------------------	--------------------------------

"I am throwing the ball to the dog"

Noun identification

"I am throwing the ball to the dog"

Noun identification

"Mommy is eating"

"Mommy is eating"

Methodology						
		0		0		
		0		0		
	Cluster	1		1		
	Indicator – vector	0		0	Cluster Indicator vector	
	0		0			

3 nouns Main verb is transitive

1 noun Main verb is non-transitive

Can predict word concreteness as an approximation (most concrete words are nouns, and children learn concrete nouns first)

Semantic clustering of words

- Used to estimate word similarity

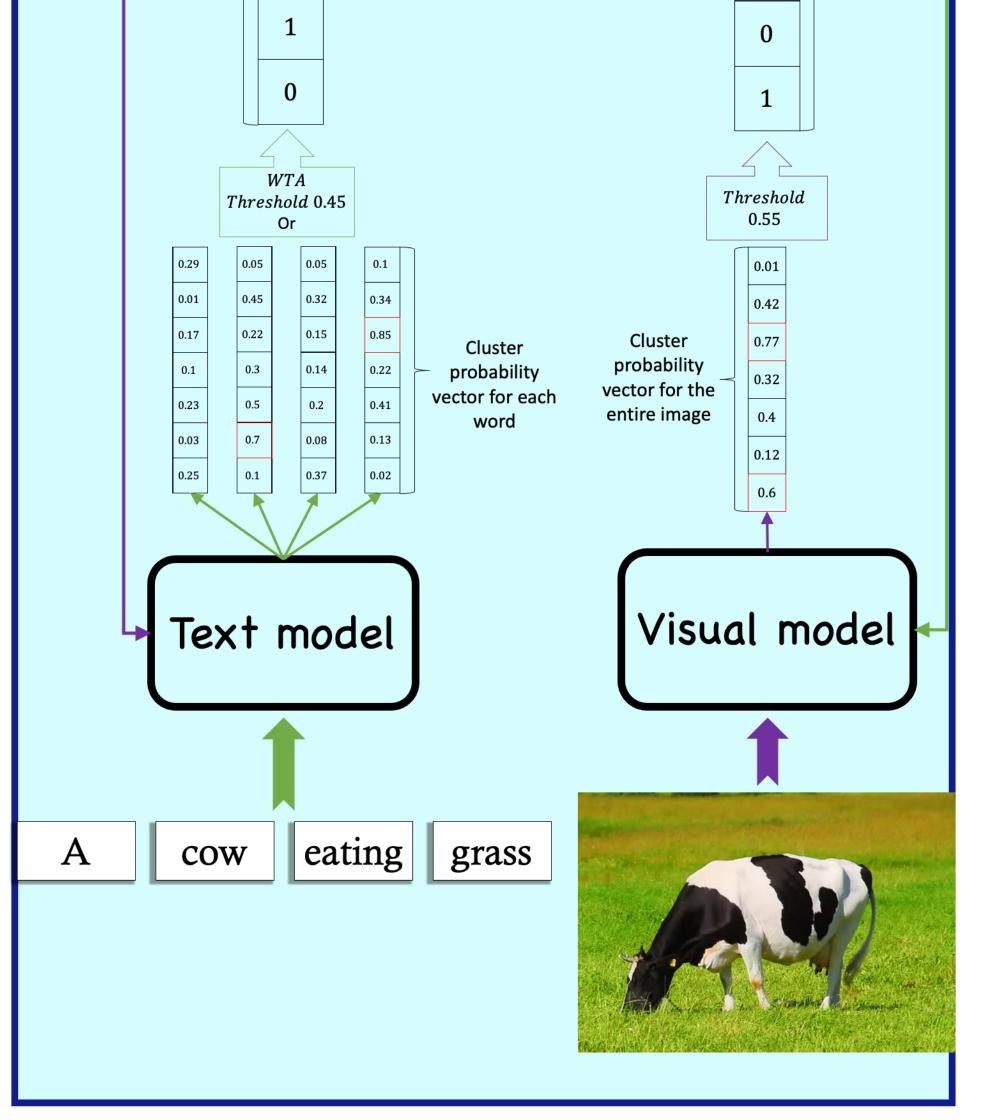
- Used as context:

In experiments, when preceded by a word from the same cluster, a target word was processed faster

Object recognition

- Identify the location of objects in an image
 - Cluster the objects to gradually learned

clusters



Text model:

Objective

- What information can be acquired from **raw image + caption** pairs, without any pre-training or external supervision.

- Can concreteness prediction, word semantic clustering and object **detection** be learned?

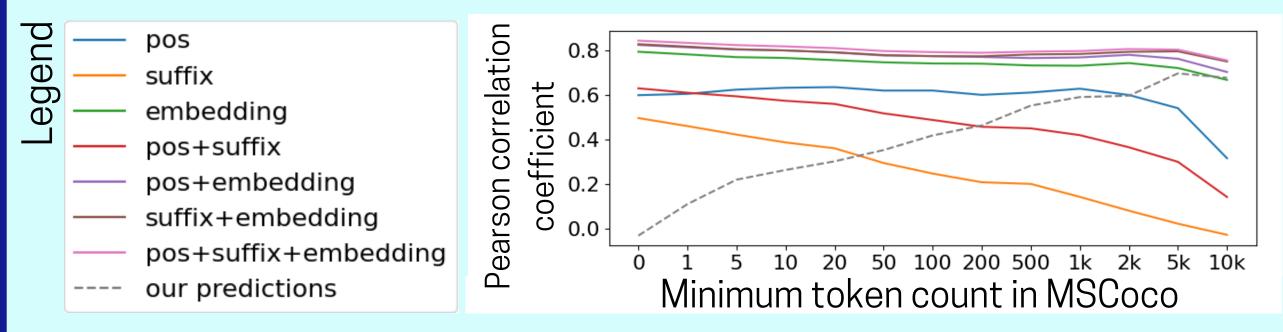
Previous work

- Used pre-trained visual model or structured input instead of raw images
- Unrealistic as a cognitive setting

Results Analysis

Concreteness prediction

- By taking maximum over the cluster probability vector
- Compared to a **supervised baseline** with linguistic features (POS, frequent suffixes, pre-trained embedding)
- Evaluated the **Pearson coefficient** of predictions with ground-truth values (annotated by humans)
- Used filtered validation sets: Tokens that occur more than X times in the MSCOCO training set



Word semantic clustering

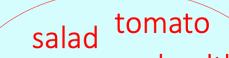
- Evaluated on a categorization dataset: **purity 40.05, collocation 0.3565, F1 0.3772** (chance-level is 0.193, 0.135, 0.159)
- Induced clusters are **associative clusters** (rather than similarity clusters)

climb

- The words in each cluster are words that are **likely to appear in the same scene**
- Not necessarily semantic similar words

"animal on tree" scene

bird



- 1. Compute p(cluster|word) for each word in the input and each cluster
- 2. For each word select cluster with highest probability if it exceeds threshold θ_t , otherwise select none
- 3. The final prediction the union of all predicted clusters

Visual model:

- Compute p(cluster | image) for each cluster
- 2. Select clusters for which p(cluster | image) exceeds threshold θ_{n}

Learning:

- Visual model learning:
- Text output vector supervises the visual model
- Visual loss function compares visual probability vector and text output vector

Text model learning:

- Visual output vector supervises the text model
- We use a simple word-cluster co-occur count model

Experiments

- Trained the model on **MSCOCO**, a dataset with imagecaption pairs (captions created by human annotators):
- 55,700 images

Conclusion

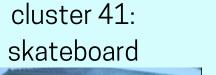
- **278,628 captions** (~5 captions per image)
- **65 ground-truth classes**

cluster 99:

Visual object recognition

- Mapped ground-truth classes to clusters using the **name of the class**
- Identified each cluster by the names of the ground-truth classes mapped to it - Given an image, predicted the clusters
- Using **class activation mapping** (CAM), extracted a heat map of salient pixels

cluster 23:



cluster 42:

- Learned concreteness prediction, **without explicit training** for this task

- Performed better on **"familiar" tokens**
- On very frequent tokens performed better than a supervised baseline that also uses a pretrained POS tagger
- The induced word clusters are **associative** (unlike the classic semantic clusters)
- Learned to **recognize objects** without direct supervision

Future work: Word concreteness can be used as a building block for more complex tasks: constituency parsing and semantic role labelling