Combining Shallow and Deep Representations for Text-Pair Classification

Vincent Nguyen^{1,2}, Sarvnaz Karimi², Zhenchang Xing¹ Australian National University¹ and CSIRO's Data61²

Vincent.Nguyen@anu.edu.au https://ngu.vin

Background

Text-pair classification determines the class relationship between two pieces of text (e.g., two sentences).

Motivation

- Some methods in text-pair classification use transformer encoders with a dense fully connected layer over the classification token.
- Improvements to transformer encoders often involve scaling the model capacity through either dataset source or size, pretraining task changes and increasing model parameter count.
- However, the *classification token* is typically the only feature used for classification.
- Our work leverages more representations, from shallow model layers and deep model representations from the upper layers, for classification without significantly changing inference or training time, and model parameter count.

Datasets

MEDIQA

Natural Language Inference

Natural Language Inference (NLI) can be used to validate if the answer can be inferred from the question.

Premise	Hypothesis
She was not able to speak, but appeared	Patient had aphasia
to comprehend well	
Had an ultimately negative esophagogas-	Patient has no pain
troduodenoscopy and colonoscopy	
Aorta is mildly tortuous and calcified	the aorta is normal

Recognising Question Entailment

Q1: Can you mail me patient information about Glaucoma, I was recently diagnosed and want to learn all I can about the disease. **Q2:** How is glaucoma diagnosed?

Stack Overflow

Original Question Conversion Error setting value for 'null Converter' - Why do I need a Converter in JSF? Duplicate Question selectOneMenu with complex objects, is a converter necessary? **Negative Sample** Conversion Error setting value '1' for 'null Converter'

General Domain

We use the SNLI dataset and Quora Duplicate Questions dataset from the general domain to assess generalisability.

Main Problems

- Contemporary transformer-based language models do not leverage different levels of representation in a model.
- Proposal: Leverage shallow and deep representations from all layers in the

encoder for use in the final prediction.

		Method	Α	Р	R	F 1		
		TE	0.798	0.599	0.609	0		
	SNLI	TE _{conv}	0.869 †	0.653 ‡	0.657†	(
		TE _{aux}	0.830	0.624	0.633	(
Open-Domain		SOIA	0.923 (Liu et al., 2019b)					
	Quora	TE	0.811	0.739	0.755			
		TE _{conv}	0.880‡	0.842 ‡	0.832‡			
		TE _{aux}	0.879‡	0.811‡	0.878‡			
		SOIA	0.923 (rang et al.	, 2019)			
		TE	0.335	0.112	0.333			
	NLI	TE _{conv}	0.797 ‡	0.797‡	0.797‡			
		TE _{aux}	0.728‡	0.727	0			
		501A	0.980 (Ben Abacha et al., 2019)					
		TE	0.557	0.278	0.500			
MediQA	RQE	TE _{conv}	0.536	0.567‡	0.535			
		TE _{aux}	0.911 †	0.9416‡	0.925‡	01		
		501A	0.749 (1	ben Abaci	ia et al., 20	U		
		TE	0.575	0.287	0.500			
	QA	TE	0.718	0.714‡	0.713‡			
		SOTA	0.783 (1	0.9444 Ben Abacł	0.94 /‡ halet al 20	0		
		TE	0.010	0.020	0.007			
Stack Overflow	DOD		0.919	0.929	0.907			
Stack Overnow	DQD	TE _{conv}	0.939	0.952	0.920			
			0.667	0.502	0.502	-		
Average		TE	0.007	0.302	0.392			
Average		TE	0.846	0.809	0.810			

Key findings

- text pair classification.
- aids in training.
- downstream text pair classification.

Future Work

- Evaluating over more datasets
- Evaluating methodology over other transformer encoders

Acknowledgments

This research is supported by the Australian Research Training Program and the CSIRO Postgraduate Scholarship and CSIRO's Future Science platform for Precision Health.

sidual Block
sidual Block
Convolution ng sequence dimension
Add
chNorm then ReLU
Convolution
hNorm then
output
Linear
<u> </u>
1-Convolution
idden state i+2

variants.

• Additional features from the lower layers aids in generalisation and allow the model to better understand syntax, and numerical structure (medical charts) for

• We observe increased gradient propagation to early parts of the network which

• Even when the encoder is untrained, leveraging more layer representations aids