Combining Shallow and Deep Representations for Text-Pair Classification
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Background Architecture encoder for use 1n the final prediction.

Text-pair classification determines the class relationship between two pieces of Linear Results
text (e.g., two sentences). A
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Natural Language Inference (NLI) can be used to validate if the answer can be PreViOJSIHyer Results on various datasets with BERT and Convolutional BERT variants.
. . output
inferred from the question. -
Premise Hypothesis Label T Eeony Key findings
She was not able to speak , but appeared Patient had aphasia entailment
to comprehend well K- maxpooling P Linear  Additional features from the lower layers aids in generalisation and allow the
Had an ultimately negative esophagogas- Patient has no pain neutral X model to better understand syntax, and numerical structure (medical charts) for
troduodenoscopy and colonoscopy | text pair classification.
Aorta is mildly tort d calcified  the aorta i | contradict e
orta 15 miicly tortuous and calcilie b adra s hotna) |conradieon Network * We observe increased gradient propagation to early parts of the network which
aids 1n training.
Recognising Question Entailment
e Even when the encoder 1s untrained, leveraging more layer representations aids
Q1: Can you mail me patient information about Glaucoma, I was recently diag- downstream text pair classification.
nosed and want to learn all I can about the disease. L-Comvolution | | 1-Convelution | | 1-Convelution
2: How 1s glaucoma diagnosed?
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Original Question Conversion Error setting value for ‘null .
Converter’ - Why do I need a Converter in JSF? e Evaluating methodology over other transformer encoders
Duplicate Question selectOneMenu with complex objects, is
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Negative Sample Conversion Error setting value ‘1’ for ‘null
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levels of representation 1in a model.

We use the SNLI dataset and Quora Duplicate Questions dataset from the general cision Health.

domain to assess generalisability. * Proposal: Leverage shallow and deep representations from all layers in the



