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1 Muller-Hansen et al. Text as big data: Develop codes of practice for rigorous
computational text
analysis in energy social science, 2020

S Bl & Lofferty Dynamic Topic Models. 2006 Figure 2: Change in word (top) and topic (bottom; blue bar) prevalence over time for two topics related to electricity
3 Blei et al. Latent Dirichlet Allocation, 2003 generation (a) and (b). (¢) shows real generation statistics for the U.S.



