Document Level Hierarchical Transformer

Najam Zaidi (Monash University), Trevor Cohn (University of Melbourne),

Gholamreza Haffari (Monash University)

Problem Formulation Training and Generation

Abstract

Algorithm 1 Generation in HMDP Multi-News DUC-2004

Generating long and coherent text is an important and We cast document generation and refinement as Regulres Taitial doctmeiit d; policy: %o, S R R T
. . A 5 - * . . 1: d‘—d{) rmer -5 2:2 .. -.-
challenging task encompassing many application areas a hierarchical Markov decision process (HMDP) T o E*:‘:‘;“ §§2 '31“3 g %’.f‘; E% %E:
such as summarization, document level machine with a two level hierarchy. The high level program i ;eg-;::e:‘e; agf;jxrzs.calogﬂg,,”vsl%d) > Do reposition LT TS .
transla“on and Story generathn Desprte the success |n iS deﬁned by the mple (@’dm’g’@'do) Where 5: ins_lndeJh-argmaxpZ,h,mcdlogn;”’f‘(p;|s,-,s,-+,,d) > Do insertion Table 1: l?.xp.crimcm Results on Multi-News and
6: d«&(d ins_index) > Call to Low level MDP DUC2004 dataset
mOde“ng INntra-sentence Coherence’ existing |Ong text astated € 2 Corresponds to a set of SEquences 7: upd_lndexo-argmaxuz,ledlogng:d(u,-ls,-,d) > Do update
) . S . 8: d ~ &(d,upd_index) > Call to Low level MDP Synthetic ROC-Stories
generation models (e.g., BART and GPT-3) still struggle to d = (s1,82,..,81) up to length L, and dp € 2 is 9: end while Cop — msy e

the initial document. The low level program cor- exl 28 a3
responds to the tuple (¥, o/ ,8,%,s,) where a Algorithm 2 Low Level MDP e L
Require: Document d, policy: my,, Hi Level MDP action: H
state s € % corresponds to a sequence of tokens 1: while Termination condition is not met do
: « bui &
s = (W, Wa, ..., wy,) from the vocabulary V up to oG
length n, and sg € & is the initial sequence.

maintain a coherent event sequence throughout the
generated text. We conjecture that this is because of the
difficulty for the model to revise, replace or revoke any
part that has been generated by the model.

Table 2: Experiment Results on Synthetic and ROC-
stories dataset. We report the BLEU score in the table.

if sg is empty then
8§ « 89 > Skip reposition
else
rep_index « argmax_ 3., ¢ log n;:p (rilw;,s,d)
d « &(s,rep_index)

The main results for summarization are shown in tablel. The best result is obtained by copy
across both dataset indicating that post editing of long sequences may hurt its quality. Copy

> Do reposition :
consist of output from SummPip system. SummPip uses graph clustering to find relevant

In this paper, we present a novel semi-autoregressive
document generation model capable of revising and
editing the generated text. Building on some recent
semi-autoregressive models, we propose document

end if sentences which are then used to generate the summary. Among other models, the Vanilla
transformer performed better showing a strong bias present in the languages for
autoregressive monotone generation. Levenshtein and the Editor transformer performed
comparably whereas as our model showed no improvement over the baselines. We see
similar performance in Synthetic and ROC-stories dataset in table \ref{tab:results2} with
Vanilla transformer performing better then the other models.

ol i e

Policies

ins

plh—lndex‘_ al'gmapow,~,:u,--leslog”gL (pilwh wi+lvsvd)
10: s « &(s,plh_index)

> Insert placeholders

11: tok_index «— argmax, ", cs w,==<mask> logn",‘zk (tilw;,s,d)

High Level Actions work at the sentence level: 120 s+ &(s,tok_index)
* Reposition: The reposition policy reads in the document consisting L T

> Fill placeholders

14: d « documentUpdate(d,s)

generation as a hierarchical Markov decision process
with a two level hierarchy, where the high and low level
editing programs generate and refine the document. We
train our model using imitation learning and introduce

of set of sequences. For every sentence, the reposition policy
makes a categorical decision between O and L+1 where L is the
number of sequences in the document.

Insert: The insertion policy reads the input document consisting of

Algorithm 3 Training for Hierarchical Levenshtein Transformer

Require: Training data 9, Model policy: mg, Expert policy: x.
1: while Maximum training steps reached do

2:

(dvdt) ~T

> Sample a training pair

Conclusion and future directions

We present a hierarchical document generation model, that is

capable of revising and editing its generated text thus bringing it

_i ‘ ‘ set of sequences and for every possible slot, the insertion polic 3 repH”*,insH*,updH" — 7¥(d,d.) > Get oracle actions . .
roll-in policy such that each policy learns on the output i aqb'nar e h'th's | (insert here) or O (dF; no>’: & repLl*,insL1’,tokL1*,repl2®,insL2", tokL2* — 7L(d,d.) closer to human-level intelligence. Although results showed that
: : : : : | ision which i | . . g L :
of applying the previous action. Experiments applying nsert) Y $ PPy logn (repHr) our approach lags behind the baselines, it did shed light into various
. . . INSert). : On e O B . .
the proposed approach convey various insights on the . . - 6 d-—applyAction(d, repH") problems present in semi-
bl f ' ' del * Update: The update policy reads the input document, consisting of ' ' autoregressive models and long document generation. In the future
i 7. LI e — Yy ncaloOgnl S (insH] 8i,8i41,d) - :
problems of long text generation using our model. We set of sequences, and for every sequence position, the update e L] we will be incorsoratin
suggest various remedies such as using distilled dataset, oolicy makes a binary decision which is 1 (update this sentence) or 1 POIGtiE
o . . . 9 Ly —-Tuweslogn,” (repLl}lw;,s,d) > Low Level Distilled Dataset
designing better attention mechanisms and using O (do not update) 10: s~ applyAction(s,repL1°) . Better traini .
t . d | | | | 11: .Z’é:'"-——):,f‘,,,w,,l“log{tb’L"(insLl;|w,-,w,-ﬂ,s,d) eler training regimes
sl Egress e MDIEES e el o At 9 IR A (E1 1E Lonon el At « at th d level . e T R 0. » Use of autoregressive model as low level programmer
ow Level Actions work at the word level: ' 0: wi€s,w;=<mask> 08y, 158, . .
. . 14: d-—applyAction(d,insH") « Attention mechanism
* Reposition and Insert: Similar to sentence level but works at word
15: .‘fé‘ﬂpd - -Z,,Edlogn;pd(ude,.' Is;,d)
|€V€| 16: 8 « buildFrame(updH~,d)
17: gorLepZ - Zw,a logn;:p(repLz; |w;,s,d) > Low Level Acknowledgements
18: s « applyAction(s, repL2")
19: Ly = = Ly es 108 (insL2] (Wi, Wiy, s,d)
20: s «— applyAction(s,insL2*) The Authors would like to acknowledge reviewers for their constructive comments.
21: .‘2’0':"‘2 — =Y w,es,w;=<mask> logn“,‘L’k(tokLZ‘TIw,-,s,d)
222 0—0-AV[L, P+ L+ z,,"}f"' + .seg’f”‘ + L4051 o SpIOKL 4, z;,’:"z + 02 4 Splok2)

23: end while

