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Introduction

Welcome to the 19th edition of the Annual Workshop of the Australasian Language Technology Association (ALTA
2021). The purpose of ALTA is to promote language technology research and development in Australia and New
Zealand. Every year ALTA hosts a workshop which is the key local forum for disseminating research in Natural
Language Processing and Computational Linguistics, with presentations and posters from students, industry, and
academic researchers. This year ALTA is hosted as a virtual workshop, due to the COVID-19 pandemic. In total we
received 18 long, 8 short, and 2 abstract submissions and we accepted 15 long and 7 short papers to appear in the
workshop, as well as the 2 extended abstracts. Each paper was reviewed by at least two members of the program
committee, using a double-blind protocol. Great care was taken to avoid all conflicts of interest. Of all submissions,
25 were first-authored by students. We had submissions from a total of seven countries: Australia, New Zealand,
Spain, France, Germany, Netherlands and United States. We are extremely grateful to the Programme Committee
members for their time and their detailed and helpful comments and reviews. This year we had committee members
from all over the globe including Australia, New Zealand, Japan, Sweden, Switzerland, United States and United
Arab Emirates. Overall, there will be six oral presentation sessions and two virtual poster sessions. We also
ran a shared task in Evidence Based Medicine (EBM) organised by Diego Mollá-Aliod (Macquarie University).
Participants were invited to submit a system description paper, which are included in this volume with a light review
by ALTA chairs. Finally, the workshop will feature keynotes from Barbara Plank (IT University of Copenhagen),
Ben Hutchinson (Google) and Dirk Hovy (Bocconi University), following a tradition of bringing speakers from both
academia and industry. ALTA 2021 is very grateful for the financial support generously offered by our sponsors.
Without their contribution, the running of these events to bring together the NLP community of the Australasian
region would have been a challenge. We would like to express sincere gratitude to our sponsors. We very much
hope that you will have an enjoyable and inspiring time at ALTA 2021!

Afshin Rahimi, William Lane and Guido Zuccon

Brisbane, Australia

Dec 2021
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Invited Talks

Barbara Plank: Tackling scarce and biased data for more inclusive Natural Language Processing

Deep neural networks have revolutionised our field in recent years. Particularly contextualised representations
obtained from large-scale language models have pushed frontiers. Despite of these advances, many challenges and
research problems remain, due to the rich variability of language and a dreadful lack and bias in resources. In this
talk, I will outline possible ways to go about these challenges to tackle scarce data and label bias. I will draw upon
recent research in cross-lingual learning, data selection and learning from disagreement and present (on-going) work
applied to NLP tasks such as syntactic processing, named entity recognition and task-oriented dialogue, showing
how weak supervision and multi-task learning can help remedy some of these challenges.

Ben Hutchinson: Putting NLP Ethics Into Context

In order to consider the societal and ethical consequences of biases in NLP models, it is necessary to consider how
the models will be integrated into user-facing AI systems and products. We also need to consider who those systems
will be used by, on and with. In the first part of this talk, I will adopt a wide lens and consider technology ethics
within various social, cultural and historical contexts, using examples from my research. In the second part of
this talk, I will zoom in to discuss practical challenges that arise when building NLP systems that are contextually
appropriate and responsible.

Dirk Hovy: More than words – Integrating social factors into language modeling

Language is a social construct. We use it to achieve various conversational goals. Only one among them is to
convey information. However, natural language processing has traditionally focused only on this informational
aspect, ignoring all social aspects of language. That restriction was partially necessary to make modeling progress.
However, I argue that as modeling power increases, we might want to revisit the issue. Social aspects of language
can help disambiguate meaning, add more nuance to our models, and are becoming increasingly important in all
aspects of generation. In this talk, I will outline several of the social dimensions that influence language use, how
they affect NLP models, and what efforts are already underway to incorporate them. I will conclude with some open
questions and ideas for future directions. If we manage to include social aspects of language into NLP, I believe we
will open new research avenues, improve performance, and create fairer language technology.
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Abstract

Conversation disentanglement, the task to
identify separate threads in conversations, is
an important pre-processing step in multi-
party conversational NLP applications such
as conversational question answering and con-
versation summarization. Framing it as a
utterance-to-utterance classification problem
— i.e. given an utterance of interest (UOI),
find which past utterance it replies to — we
explore a number of transformer-based mod-
els and found that BERT in combination with
handcrafted features remains a strong baseline.
We then build a multi-task learning model
that jointly learns utterance-to-utterance and
utterance-to-thread classification. Observing
that the ground truth label (past utterance) is
in the top candidates when our model makes
an error, we experiment with using bipartite
graphs as a post-processing step to learn how
to best match a set of UOIs to past utterances.
Experiments on the Ubuntu IRC dataset show
that this approach has the potential to out-
perform the conventional greedy approach of
simply selecting the highest probability candi-
date for each UOI independently, indicating a
promising future research direction.

1 Introduction

In public forums and chatrooms such as Reddit and
Internet Relay Chat (IRC), there are often multiple
conversations happening at the same time. Fig-
ure 1 shows two threads of conversation (blue and
green) running in parallel. Conversation disentan-
glement, a task to identify separate threads among
intertwined messages, is an essential preprocessing
step for analysing entangled conversations in multi-
party conversational applications such as question
answering (Li et al., 2020) and response selection
(Jia et al., 2020). It is also useful in constructing
datasets for dialogue system studies (Lowe et al.,
2015).

[12:05] <ydnar> for what reason would a dvd not play if i have 
libdvdcss2 installed?

[12:05] <Ng> ydnar: what are you using to play it?

[12:06] <holycow> because it couldn't crack the encoding for the 
particual portion of the dvde

[12:06] <ydnar> tried vlc. holycow, do you have any

[12:05] <gourdin> we will we be able to access an edgy repo ?

[12:06] <Anfangs> Edgy Eft is the next codename for Ubuntu dapper+1. 
See https://ubuntu.com/0064.html.

[12:06] <gourdin> I don’t think the link works

Figure 1: Ubuntu IRC chat log sample sorted by time.
Each arrow represents a directed reply-to relation. The
two conversation threads are shown in blue and green.

Previous studies address the conversation disen-
tanglement task with two steps: link prediction and
clustering. In link prediction, a confidence score is
computed to predict a reply-to relation from an ut-
terance of interest (UOI) to a past utterance (Elsner
and Charniak, 2008; Zhu et al., 2020). In cluster-
ing, conversation threads are recovered based on
the predicted confidence scores between utterance
pairs. The most popular clustering method uses a
greedy approach to group UOIs linked with their
best past utterances to create the threads (Kummer-
feld et al., 2019; Zhu et al., 2020).

In link prediction, the model that estimates the
relevance between a pair of utterances plays an
important role. To this end, we explore three
transformer-based pretrained models: BERT (De-
vlin et al., 2019), ALBERT (Lan et al., 2019) and
POLY-ENCODER (Humeau et al., 2019). These
variants are selected by considering performance,
memory consumption and speed. We found that
BERT in combination with handcrafted features re-
mains a strong baseline. Observing that utterances
may be too short to contain sufficient information
for disentanglement, we also build a multi-task
learning model that learns to jointly link a UOI to
a past utterance and a cluster of past utterances (i.e.

1



the conversation threads).
For clustering, we experiment with bipartite

graph matching algorithms that consider how to
best link a set of UOIs to their top candidates,
thereby producing globally more optimal clusters.
When the graph structure is known, we show that
this approach substantially outperforms conven-
tional greedy clustering method, although chal-
lenges remain on how to infer the graph structure.

To summarise:

• We study different transformer-based models
for conversation disentanglement.

• We explore a multi-task conversation dis-
entanglement framework that jointly learns
utterance-to-utterance and utterance-to-thread
classification.

• We experiment with bipartite graphs for clus-
tering utterances and found a promising future
direction.

2 Related Work

Conversation disentanglement methods can be clas-
sified into two categories: (1) two-step methods
and (2) end-to-end methods.

In two-step methods, the first step is to measure
the relations between utterance pairs, e.g., reply-
to relations (Zhu et al., 2020; Kummerfeld et al.,
2019) or same thread relations (Elsner and Char-
niak, 2008, 2010). Either feature-based models
(Elsner and Charniak, 2008, 2010) or deep learn-
ing models (Kummerfeld et al., 2019; Zhu et al.,
2020) are used. Afterwards a clustering algorithm
is applied to recover separate threads using results
from the first step. Elsner and Charniak (2008,
2010, 2011) use a greedy graph partition algorithm
to assign an utterance u to the thread of u′ which
has the maximum relevance to u among candidates
if the score is larger than a threshold. Kummer-
feld et al. (2019); Zhu et al. (2020) use a greedy
algorithm to recover threads following all reply-to
relations independently identified for each utter-
ance. Jiang et al. (2018) propose a graph connected
component-based algorithm.

End-to-end methods construct threads incremen-
tally by scanning through a chat log and either
append the current utterance to an existing thread
or create a new thread. Tan et al. (2019) use a
hierarchical LSTM model to obtain utterance rep-
resentation and thread representation. Liu et al.

Symbol Meaning

U A chat log with N utterances
T A set of disjoint threads in U
T A thread in T
ui An utterance of interest
u An utterance in a chat log
Ci A candidate (parent) utterance pool for ui

ti The token sequence of ui with ni tokens

Table 1: A summary of symbols/notations.

(2020) build a transition-based model that uses
three LSTMs for utterance encoding, context en-
coding and thread state updating, respectively.

3 Notations and Task Definition

Given a chat log U with N utterances
{u1, u2, · · · , uN} in chronological order, the
goal of conversation disentanglement is to obtain
a set of disjoint threads T = {T 1, T 2, · · · , T m}.
Each thread T l contains a collection of topically-
coherent utterances. Utterance ui contains a list of
ni tokens wi1, w

i
2, · · · , wini

.
The task can be framed as a reply-to relation

identification problem, where we aim to find the
parent utterance for every ui ∈ U (Kummerfeld
et al., 2019; Zhu et al., 2020), i.e., if an utterance
ui replies to a (past) utterance uj , uj is called the
parent utterance of ui. When all reply-to utterance
pairs are identified, T can be recovered unambigu-
ously by following the reply-to relations.

Henceforth we call the target utterance ui an
utterance of interest (UOI). We use ui → uj to rep-
resent the reply-to relation from ui to uj , where uj
is the parent utterance of ui. The reply-to relation
is asymmetric, i.e., ui → uj and uj → ui do not
hold at the same time. We use a candidate pool
Ci to denote the set of candidate utterances from
which the parent utterance is selected from. Table 1
presents a summary of symbols/notations.

4 Dataset

We conduct experiments on the Ubuntu IRC
dataset (Kummerfeld et al., 2019), which contains
questions and answers about the Ubuntu system, as
well as chit-chats from multiple participants. Ta-
ble 2 shows the statistics in train, validation and
test sets. The four columns are the number of chat
logs, the number of annotated utterances, the num-
ber of threads and the average number of parents
for each utterance.
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Split Chat Logs Ann. Utt Threads Avg. parent

Train 153 67463 17327 1.03
Valid 10 2500 495 1.04
Test 10 5000 964 1.04

Table 2: Statistics of training, validation and testing
split of the Ubuntu IRC dataset. “Ann. Utt” is the num-
ber of annotated utterances. “Avg. parent” is the aver-
age number of parents of an utterance.

5 Experiments

We start with studying pairwise models that take
as input a pair of utterances and decide whether
a reply-to relation exists (Section 5.1). Then, we
add dialogue history information into consideration
and study a multi-task learning model (Section 5.2)
built upon the pairwise models. In Section 5.3,
we further investigate a globally-optimal approach
based on bipartite graph matching, considering the
top parent candidates of multiple UOIs together to
help resolve conflicts in the utterance matches.

5.1 Pairwise Models

To establish a baseline, we first study the effec-
tiveness of pairwise models that measure the con-
fidence of a reply-to relation between an UOI and
each candidate utterance independently without
considering any past context (e.g., dialogue his-
tory). To find the parent utterance for ui, we com-
pute the relevance score rij between ui and each
uj ∈ Ci:

rij = f(ui, uj ,vij), ∀ uj ∈ Ci (1)

where f(·) is the pairwise model and vij represents
additional information describing the relationship
between ui and uj , such as manually defined fea-
tures like time, user (name) mentions and word
overlaps. We use transformer-based models to auto-
matically capture more complex semantic relation-
ships between utterances pairs, such as question-
answer relation and coreference resolution which
cannot be modeled by features very well.

Following Kummerfeld et al. (2019), we assume
the parent utterance of a UOI to be within kc history
utterances in the chat log, and we solve a kc-way
multi-class classification problem where Ci con-
tains exactly kc utterances [ui−kc+1, · · · , ui−1, ui].
UOI ui is included in Ci for detecting self-links,
i.e., an utterance that starts a new thread. The train-

ing loss is:

Lr = −
N∑

i=1

kc∑

j=1

1[yi = j] log pij (2)

where 1[yi = j] = 1 if ui → uj holds, and 0
otherwise; pij is the normalized probability after
applying softmax over {rij}uj∈Ci .

5.1.1 Models
We study the empirical performance of the follow-
ing pairwise models. See more details of the mod-
els in Appendix 8.
LASTMENTION: A baseline model that links a
UOI ui to the last utterance of the user directly
mentioned by ui. If ui does not contain a user
mention, we link it to the immediately preceding
utterance, i.e., ui−1.
GLOVE+MF: Following Kummerfeld et al.
(2019), this is a feedforward neural network (FFN)
that uses the max and mean Glove (Pennington
et al., 2014) embeddings of a pair of utterances and
some handcrafted features1 including time differ-
ence between two utterances, direct user mention,
word overlaps, etc.
MF: An FFN model that uses only the handcrafted
features in GLOVE+MF. This model is designed to
test the effectiveness of the handcrafted features.2

BERT (Devlin et al., 2019): A pretrained model
based on transformer (Vaswani et al., 2017) fine-
tuned on our task. We follow the standard setup for
sentence pair scoring in BERT by concatenating
UOI ui and a candidate uj delimited by [SEP].
BERT+MF: A BERT-based model that also incor-
porates the handcrafted features in GLOVE+MF.
BERT+TD: A BERT-based model that uses the
time difference between two utterances as the only
manual feature, as preliminary experiments found
that this is the most important feature.
ALBERT (Lan et al., 2019): A parameter-
efficient BERT variant fine-tuned on our task.
POLY-ENCODER (Humeau et al., 2019): A
transformer-based model designed for fast train-
ing and inference by encoding query (UOI) and
candidate separately.3 We use POLY-ENCODER

1See a full feature list in Kummerfeld et al. (2019).
2Note that MF is different from the manual features model

in Kummerfeld et al. (2019) which uses a linear model.
3It is worthwhile to note that POLY-ENCODER showed

strong performance on a related task, next utterance selection,
which aims to choose the correct future utterance, but with two
key differences: (1) their UOI incorporates the dialogue his-
tory which provides more context; (2) they randomly sample
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in two settings: POLY-BATCH where the labels of
UOIs in a batch is used as the shared candidate
pool to reduce computation overhead, and POLY-
INLINE where each query has its own candidate
pool similar to the other models.

5.1.2 Results
Evaluation Metrics We measure the model per-
formance in three aspects: (1) the link prediction
metrics measure the precision, recall and F1 scores
of the predicted reply-to relations; (2) the clus-
tering metrics include variation information (VI,
(Meilă, 2007)), one-to-one Overlap (1-1, (Elsner
and Charniak, 2008)) and exact match F1; these
evaluate the quality of the recovered threads;4 and
(3) the ranking metrics Recall@k (k = {1, 5, 10})
assess whether the ground truth parent utterance uj
is among the top-k candidates.5

Dataset construction In training and validation,
we set Ci to contain exactly one parent utterance of
an UOI ui. We observe that 98.5% of the UOIs in
the training data reply to a parent utterance within
the 50 latest utterances and so we set kc = 50 (i.e.,
|Ci| = 50). We discard training samples that do
no contain the parent utterance of an UOI under
this setting (1.5% in the training data). If there
are more than one parent utterances in Ci (2.5% in
training data), we take the latest parent utterance
of ui as the target “label”. We do not impose these
requirements in testing and so do not manipulate
the test data.

Model configuration We clip both UOI ui and
a candidate uj to at most 60 tokens. |vij | (man-
ual feature dimension) = 77 in BERT+MF. In
BERT+TD, |vij | = 6. The dimensionality of
word embeddings in MF is 50. All BERT-based
models use the “bert-base-uncased” pretrained
model. The batch size for POLY-INLINE, BERT,
BERT+TD and BERT+MF is 64.6 The batch
sizes of POLY-BATCH and ALBERT are 96 and
256 respectively. We tune the batch size, the num-
ber of layers, and the hidden size in BERT+MF
and BERT+TD according to recall@1 on the vali-
dation set.

negative examples to create the candidates, while we use kc
past utterances as candidates, which makes the next utterance
selection task arguably an easier task.

4Exact Match F1 is calculated based on the number of
recovered threads that perfectly match the ground truth ones
(ignoring the ground truth threads with only one utterance).

5E.g., if uj is in the top-5 candidates, recall@5 = 1.
6Actual batch size is 4 with a gradient accumulation of 16.

Results and discussions Table 3 shows that
LASTMENTION is worse than all other models,
indicating that direct user mentions are not suffi-
cient for disentanglement. The manual features
model (MF) has very strong results, outperforming
transformer-based models (BERT, ALBERT and
POLY-ENCODER) by a large margin, suggesting
that the manual features are very effective.

The overall best model across all metrics is
BERT+MF. Comparing BERT+MF to BERT,
we see a large improvement when we incorporate
the manual features. Interestingly though, most of
the improvement appears to come from the time
difference feature (BERT+MF vs. BERT+TD).

Looking at BERT and POLY-INLINE, we see
that the attention between words in BERT is help-
ful to capture the semantics between utterance pairs
better, because the only difference between them
is that POLY-INLINE encodes two utterances sep-
arately first and uses additional attention layers to
compute the final relevance score.

The performance gap between POLY-BATCH and
POLY-INLINE shows that the batch mode (Humeau
et al., 2019) strategy has a negative impact on the
prediction accuracy. This is attributed to the dif-
ference in terms of training and testing behaviour,
as at test time we predict links similar to the inline
mode (using past kc utterances as candidates).

The GPU memory consumption and speed of
transformer-based models are shown in Table 4.
POLY-BATCH is the most memory efficient and
fastest model, suggesting that it is a competitive
model in real-world applications where speed and
efficiency is paramount.

5.2 Context Expansion by Thread
Classification

The inherent limitation of the pairwise models is
that they ignore the dialogue history of a candidate
utterance. Intuitively, if the prior utterances from
the same thread of candidate utterance uj is known,
it will provide more context when computing the
relevance scores. However, the threads of candidate
utterances have to be inferred, which could be noisy.
Furthermore, the high GPU memory consumption
of transformer-based models renders using a long
dialogue history impractical.

To address the issues above, we propose a multi-
task learning framework that (1) considers the dia-
logue history in a memory efficient manner and (2)
does not introduce noise at test time.
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Link Prediction Ranking Clustering
Model Precision Recall F1 R@1 R@5 R@10 1-1 VI F

Last Mention 37.1 35.7 36.4 - - - 21.4 60.5 4.0
GLOVE+MF 71.5 68.9 70.1 70.2 95.8 98.6 76.1 91.5 34.0
MF 71.1 68.5 69.8 70.2 94.0 97.3 75.0 91.3 31.5
POLY-BATCH 39.3 37.9 38.6 40.8 69.8 80.8 52.3 80.8 9.8
POLY-INLINE 42.2 40.7 41.4 42.8 70.8 81.3 62.0 84.4 13.6
ALBERT 46.1 44.4 45.3 46.8 77.3 88.4 68.6 87.9 22.4
BERT 48.2 46.4 47.3 48.8 75.4 84.7 74.3 89.3 26.3
BERT+TD 67.9 65.4 66.6 66.9 90.6 95.3 76.0 91.1 34.9
BERT+MF 73.9 71.3 72.6 73.9 95.8 98.6 77.0 92.0 40.9

Table 3: Results of pairwise models. Ranking metrics are not applicable to Last Mention. Best scores are bold.

Model GPU Mem (GB) Speed (ins/s)

BERT 18.7 9.4
ALBERT 14.6 9.4

POLY-INLINE 9.9 16.8
POLY-BATCH 5.1 36.4

Table 4: GPU memory consumption and speed of
transformer-based models. GPU Mem (GB) shows the
peak GPU memory consumption in GB during training.
Speed (ins/s) is the number of instances processed per
second during training. All experiments are conducted
on a single NVIDIA V100 GPU (32G) with automatic
mixed precision turned on and a batch size of 4.

Specifically, we maintain a candidate thread pool
with kt threads. A thread that contains multiple
candidates would only be included once. This alle-
viates some of the memory burden, not to mention
that kt is much smaller than |Ci|. For the second is-
sue, we train a shared BERT model that does reply-
to relation identification and thread classification
jointly, and during training we use the ground truth
threads but at test time we only perform reply-to re-
lation identification, avoiding the use of potentially
noisy (predicted) threads.

5.2.1 Model Architecture
The model consists of a shared BERT module and
separate linear layers for reply-to relation identifi-
cation and thread classification. As shown in Fig-
ure 2, given ui, we compute its relevance score srij
to every candidate utterances in utterance candidate
pool Ci and relevance score stil to every thread in
thread candidate pool T ci . We aim to minimize the
following loss function during model training:

L = −
( N∑
i=1

kc∑
j=1

1(yr = j) log srij

+α
N∑
i=1

kt∑
l=1

1(yt = l) log stil

) (3)

where 1(yr = j) is 1 if uj is the parent utterance
of ui, and 0 otherwise. Similarly, 1(yt = l) tests
whether ui belongs to thread T ci . Hyper-parameter
α is used to balance the importance of the two loss
components.

Relevance score computation We compute the
utterance relevance score srij between UOI ui and
each candidate utterance uj ∈ Ci in the same way
as the BERT model shown in Section 5.1 does.

For thread classification, we consider a pool con-
taining kt threads before ui, including a special
thread {ui} for the case where ui starts a new
thread. The score stil between ui and thread Tl
is computed using the shared BERT, following the
format used by Ghosal et al. (2020):

[
[CLS], w1

1, · · ·w1
n1
, w2

1, · · ·w2
n2
, wk1 · · ·wknk

,

[SEP], wi1, · · ·wini
[SEP]

]

where wpq is the q-th token of the p-th utterance in
Tl, and wim is the m-th token of ui. We take the
embedding of [CLS] and use another linear layer
to compute the final score.

5.2.2 Results and Discussion
For reply-to relation identification, we use the same
configuration described in Section 5.1.2. For thread
classification, we consider kt = 10 thread candi-
dates. Each thread is represented by (at most) five
latest utterances. The maximum number of tokens
in Tl and ti are 360 and 60, respectively. We train
the model using Adamax optimizer with learning
rate 5× 10−5 and batch size 64. As before we use
“bert-base-uncased” as the pretrained model.

As Table 5 shows, incorporating an additional
thread classification loss (“MULTI (α = k)” mod-
els) improves link prediction substantially com-
pared to BERT, showing that the thread classifica-
tion objective provides complementary information
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Figure 2: The architecture of the multi-task learning framework. On the left side, we use a BERT model with
additional dense layers to calculate the relevance score between a UOI and each candidate utterance for reply-to
relation identification. On the right side, we use the same BERT model but different dense layers on the top to
calculate the relevance scores between the UOI and each candidate thread for thread classification.

Link Prediction Ranking Clustering
Model Precision Recall F1 R@1 R@5 R@10 1-1 VI F

BERT 48.2 46.4 47.3 48.8 75.4 84.7 74.3 89.3 26.3
BERT+MF 73.9 71.3 72.6 73.9 95.8 98.6 77.0 92.0 40.9

MULTI (α = 1) 65.6 63.2 64.4 66.7 91.8 95.6 64.6 87.7 24.3
MULTI (α = 5) 66.9 64.5 65.7 65.4 91.8 95.6 68.7 88.8 27.4
MULTI (α = 10) 65.2 62.9 64.0 64.4 91.4 95.6 70.3 89.5 28.1
MULTI (α = 20) 64.7 62.4 63.5 63.9 91.0 95.0 68.3 88.8 26.7

MULTI+MF (α = 1) 72.8 70.2 71.5 71.9 94.0 96.4 76.3 91.8 36.1
MULTI+MF (α = 5) 73.3 70.7 72.0 72.4 94.0 96.5 72.8 90.8 33.1
MULTI+MF (α = 10) 72.2 69.6 70.8 70.4 93.4 96.4 71.8 90.2 29.9
MULTI+MF (α = 20) 70.8 68.2 69.5 69.4 93.4 97.3 73.2 90.6 28.6

Table 5: Results of multi-task learning model.

to the reply-to relation identification task. Interest-
ingly, when α increases from 5 to 10, both the link
prediction and ranking metrics drop, suggesting
that it is important not to over-emphasize thread
classification, since it is not used at test time.

Adding thread classification when we have man-
ual features (MULTI+MF vs. BERT+MF), how-
ever, does not seem to help, further reinforcing
the effectiveness of these features in the dataset.
That said, in situations/datasets where these man-
ual features are not available, e.g. Movie Dialogue
Dataset (Liu et al., 2020), our multi-task learning
framework could be useful.

5.3 Bipartite Graph Matching for
Conversation Disentanglement

After we have obtained the pairwise utterance rel-
evance scores for every UOI, we need to link the
candidate utterances with the UOIs to recover the
threads. A greedy approach would use all reply-to
relations that have been identified independently
for each UOI to create the threads. As shown in Fig-
ure 3, the reply-to relations for u67 and u59 using
greedy approach are {u67 → u58, u59 → u58}.

With such an approach, we observe that: (1)
some candidates receive more responses than they
should (based on ground truth labels); and (2) many
UOIs choose the same candidate. Given the fact
that over 95% of the UOIs’ parents are within
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Rongxin Zhu

Future Directions

U67 [20:32] <Bashing-om> groob: There can be only one boot control 
authority per hard drive . What I do is disable 30_os-prober in the 
seconday system,' sudo update-grub' amd in the primary also 'sudo apt-
update-grub' to propogate the changes to the system(s) .

U60 [20:30] <groob> corba: Oh, cool. Good to know! Thanks! 

U59 [20:29] <corba> groob, you could change that with grub-customizer 
easily 

U58 [20:29] <groob> corba: Err, I mean the order of the operating 
systems. OS1 appears first currently, but if OS2 ran update-grub, it would 
cause OS2 to be listed first. 

U54 [20:28] <groob> corba: Thanks for the help! I'll try using a dedicated 
boot partition instead. The biggest downside that I can think of is that the 
partition order in the menu will change depending on which OS ran 
update-grub last. If that could be solved, then it would be perfect. 

4.2

4.0 15.9

11.6

3.6

...

U51 [20:24] <groob> corba: I tried virtualization but the performance just 
isn't that great on my hardware sadly.

...

...

10.2

Figure 3: An example showing the difference between
the greedy approach and the global decoding. Consider
identifying the parent utterances of u59 and u67. Each
utterance contains ID (e.g., u51), timestamp, user name
and content. Both u59 and u67 have three candidates.
The pairwise scores are labelled to the links, indicating
the confidence of potential reply-to relations. The red
link denotes the identified reply-to relation for u67 us-
ing the greedy approach, and the green link is the result
of a global decoding algorithm.

the top-5 candidates in BERT+MF (R@5 in Ta-
ble 3), we explore whether it is possible to get better
matches if we constrain the maximum number of
reply links each candidate receives and perform the
linking of UOIs to their parent utterances together.
In situations where a UOI ui’s top-1 candidate utter-
ance uj has a relevant score that is just marginally
higher than other candidates but uj is a strong can-
didate utterance for other UOIs, we may want to
link uj with the other UOIs instead of ui. Using
Figure 3 as example, if u58 can only receive one
response, then u67 should link to the second best
candidate u54 as its parent instead of u58.

Based on this intuition, we explore using bipar-
tite algorithms that treat the identification of all
reply-to relations within a chat log as a maximum-
weight matching (Gerards, 1995) problem on a
bipartite graph. Note that this step is a post-
processing step that can be applied to technically
any pairwise utterance scoring models.

5.3.1 Graph Construction
Given a chat log U , we build a bipartite graph G =
〈V,E,W 〉 where V is the set of nodes, E is the set
of edges, and W is the set of edge weights. Set V
consists of two subsets Vl and Vr representing two
disjoint subsets of nodes of a bipartite. Subset Vl =

Rongxin Zhu

Alta Paper Preparation

UOIs UOIscandidates candidates

u1

u2

u3

u4

u5

u1

u1

u2

u3

u3

u4

u5

u1

u2

u3

u4

u5

u1

u1

u2

u3

u3

u4

u5

Figure 4: The left figure is an example bipartite graph
built from a chat log with 5 UOIs. Each UOI ui
has kc = 3 candidates {ui−2, ui−1, ui}, except the
first kc − 1 UOIs (u1 and u2). Utterances u1 and
u3 are duplicated twice because they receive 2 replies.
The corresponding disentangled chat log is shown on
the right figure with the following reply-to relations:
{u1 → u1, u2 → u1, u3 → u2, u4 → u3, u5 → u3}.

{vli}Ni=1 represents the set of UOIs, i.e., each node
vli corresponds to a UOI ui. Subset Vr represents
the set of candidate utterances. Note that some
UOIs may be candidate utterances of other UOIs.
Such an utterance will have both a node in Vl and
a node in Vr.

Some utterances may receive more than one re-
ply, i.e., multiple nodes in Vl may link to the same
node in Vr. This violates the standard assumption
of a bipartite matching problem, where every node
in Vr will only be matched with at most one node
in Vl. To address this issue, we duplicate nodes
in Vr. Let δ(uj) denotes the number of replies uj
receives, then uj is represented by δ(uj) nodes in
Vr. Now Vr =

⋃N
j=1 S(uj), where S(uj) is a set

of duplicated nodes {vrj,1, vrj,2, · · · vrj,δ(uj)} for uj .
Sets E and W are constructed based on the pair-

wise relevance scores obtained from the link predic-
tion phase. Specifically, E =

⋃N
i=1R(ui) where

R(ui) is the set of edges between ui and all its kc
candidates:

⋃kc
m=1{〈vli, vm〉}vm∈S(um). For each

UOI-candidate pair (ui, uj), if δ(uj) > 0, a set of
edges {〈vli, vrj,k〉}

δ(uj)
k=1 are constructed, each with

weight w(i, j), which is the relevance score be-
tween ui and uj . An example bipartite graph is
shown on the left side of Figure 4.

5.3.2 Integer Programming Formulation

Given the bipartite formulation above, we solve
the conversation disentanglement problem as
a maximum-weight bipartite matching problem,
which is formulated as the following constrained
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optimization problem:

max
∑

〈vi,vj〉∈E
x(i, j) · w(i, j)

s.t. ∑

vl∈neighbors(vi)
x(i, l) = 1, ∀vi ∈ Vl

∑

vp∈neighbors(vj)
x(p, j) ≤ 1, ∀vj ∈ Vr

x(i, j) ∈ {0, 1}
(4)

Here, neighbors(vx) is the set of adjacent nodes
of vx (i.e., nodes directly connected to vx) inG. For
each edge in G, we have a variable x(i, j), which
takes value 1 if we include the edge 〈vi, vj〉 in the
final matched bipartite, and 0 otherwise. Intuitively,
we are choosing a subsect of E to maximize the
total weight of the chosen edges, given the con-
straints that (1) each node in set Vl is connected to
exactly one edge (each UOI has exactly one par-
ent); and (2) each node in Vr is connected to at
most one edge.

5.3.3 Node Frequency Estimation in Vr
Since the number of replies received by an utter-
ance uj , i.e., δ(uj), is unknown at test time, we
estimate δ(uj) for each candidate utterance uj . We
experiment with two different estimation strategies:
heuristics method and regression model.

In the heuristics method, we estimate δ(uj)
based on the total relevance scores accumulated
by uj from all UOIs, using the following equation:

rij
′ =

exp(rij)∑
uk∈Ci

exp(rik)

Sj =
∑

i

rij
′

δ̂(uj) = RND(αSj + β)

where δ̂(uj) is the estimation, RND is the round(·)
function, and α and β are scaling parameters.

In the regression model, we train an FFN to pre-
dict δ(uj) using mean squared error as the training
loss. The features are normalized scores of uj from
all UOIs, as well as the sum of those scores. We
also include textual features using BERT (based on
the [CLS] vector), denoted as BERT+FFN. We use
the same RND function to obtain an integer from
the prediction of the regression models.

Precision Recall F1

Oracle 88.4 85.2 86.8
Rule-Based 73.7 70.9 72.3
FFN 73.8 71.0 72.3
BERT+FFN 72.9 70.3 71.5

Table 6: Link prediction results using bipartite match-
ing. Oracle is a model that uses ground truth node fre-
quencies for Vr.

5.3.4 Experiments and Discussion

We obtain the performance upper bound by solv-
ing the maximum weight bipartite matching prob-
lem using the ground truth node frequencies for all
nodes in Vr. This approach is denoted as “Oracle”
in Table 6. We found that when node frequencies
are known, bipartite matching significantly outper-
forms the best greedy methods (F1 score 86.8 vs.
72.6 of BERT+MF in Table 3).

When using estimated node frequencies, the
heuristics method and FFN achieve very similar re-
sults, and BERT+FFN is worse than both. Unfortu-
nately, these results are all far from Oracle, and they
are ultimately marginally worse than BERT+MF
(72.6; Table 3). Overall, our results suggest that
there is much potential of using bipartite matching
for creating the threads, but that there is still work
to be done to design a more effective method for
estimating the node frequencies.

6 Conclusion

In this paper, we frame conversation disentangle-
ment as a task to identify the past utterance(s) that
each utterance of interest (UOI) replies to, and con-
duct various experiments to explore the task. We
first experiment with transformer-based models,
and found that BERT combined with manual fea-
tures is still a strong baseline. Next we propose a
multi-task learning model to incorporate dialogue
history into BERT, and show that the method is
effective especially when manual features are not
available. Based on the observation that most ut-
terances’ parents are in the top-ranked candidates
when there are errors, we experiment with bipar-
tite graph matching that matches a set of UOIs and
candidates together to produce globally more op-
timal clusters. The algorithm has the potential to
outperform standard greedy approach, indicating a
promising future research direction.
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8 Appendix

8.1 Models
BERT : The pairwise score is computed as fol-
lows:

[e1, e2, · · · , em] = BERT(concat(ti, tj))
e = agg([e1, e2, · · · , em])
rij = We+ b

(5)
Here, concat(ti, tj) means to concatenate
the two sub-word sequences ti and tj corre-
sponding to ui and uj into a single sequence[
[CLS], wi1, · · · , wini

, [SEP], wj1, · · · , wjnj , [SEP]
]
,

where [CLS] is a special beginning token and
[SEP] is a separation token. Denote the number of
tokens in this sequence bym. Then, ek ∈ RdBERT

is the encoded embedding of the k-th (k ≤ m)
token in tij . Following (Devlin et al., 2019),
we use the encoded embedding of [CLS] as the
aggregated representation of ui and uj . Another
linear layer is applied to obtain score rij ∈ R

using learnable parameters W ∈ R1×dBERT and
b ∈ R.

8.2 BERT+MF
We obtain the encoded embedding of [CLS] in the
same way as BERT, denoted as e. Then, we com-
pute the pairwise relevance score rij as follows:

h = We e+ be (6)

z = [h;vij ] (7)

o = softsign(Wzz + bz) (8)

x = softsign(Woo+ bo) (9)

rij = sum(x) (10)

where We ∈ Rdmid×dBERT and be ∈ Rdmid are
parameters of a linear layer to reduce the dimen-
sionality of the BERT output; [h;vij ] is the con-
catenation of h and the pairwise vector of hand-
crafted features vij ∈ R

df ; Wz ∈ R
do×dz ,

bz ∈ R
do , Wo ∈ R

dx×do and bo ∈ R
dx are

parameters of two dense layers with the softsign
activation function; sum(x) represents the sum of
values in vector x.

In BERT+TD. The time difference feature be-
tween ui and uj is a 6-d vector:

[n′, x1, x2, x3, x4, x5]

where n′ = (i − j)/100 representing the rela-
tive distance between two utterances in the can-
didate pool; x1, · · · , x5 are binary values in-
dicating whether the time difference in min-
utes between ui and uj lies in the ranges of
[−1, 0), [0, 1), [1, 5), [5, 60) and (60,∞) respec-
tively.

8.3 Pairwise Models Settings

Model architecture and training We choose
the best hyper-parameters according to the ranking
performance Recall@1 on validation set. All mod-
els are evaluated every 0.2 epoch. We stop training
if Recall@1 on validation set does not improve in
three evaluations consecutively.

The final settings are as follows. In MF, we
use a 2-layer FFN with softsign activation func-
tion. Both layers contain 512 hidden units. We
train it using Adam optimizer with learning rate
0.001. For all transformer-based models (BERT,
BERT+MF, ALBERT and POLY-ENCODER), we
use Adamax optimizer with learning rate 5× 10−5,
updating all parameters in training. We use auto-
matic mixed precision to reduce GPU memory con-
sumption provided by Pytorch7. All experiments
are implemented in Parlai8.

8.4 BGMCD Set Up

Setup Both node frequency estimation and graph
construction are based on the relevance scores
from BERT+MF. In the rule-based method, we
choose α in {0.9, 1, 1, 1.3, 1.5, 1.7, 1.9} and β in
{0.1, 0.2, 0.3, 0.4, 0.5}. The optimal values α =
1.3 and β = 0.2 yield the best link prediction F1
on the validation set. The regression mode is a
2-layer fully connected neural network. Both lay-
ers contain 128 hidden units, with the ReLU ac-
tivation function. We choose hidden layer size
from {64, 128, 256} and the number of layers from
{2, 3}. We train the model using Adam optimizer
with batch size 64. Hyper-parameters are chosen
to minimize mean squared error on the validation
set. The integer programming problem is solved
using pywraplp9. We observe that sometimes the
integer programming problem is infeasible due to
underestimation of the frequencies of some nodes.
We relax Equation 4 in experiments as follows to

7https://pytorch.org/
8https://parl.ai/
9https://google.github.io/or-tools/

python/ortools/linear_solver/pywraplp.
html
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avoid infeasibility:

max
∑

〈vi,vj〉∈E
x(i, j) · w(i, j)

s.t. ∑

vl∈neighbors(vi)
x(i, l) ≤ 1, ∀vi ∈ Vl

∑

vp∈neighbors(vj)
x(p, j) ≤ 1, ∀vj ∈ Vr

x(i, j) ∈ {0, 1}
(11)
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Abstract

Human annotation for establishing the training
data is often a very costly process in natural
language processing (NLP) tasks, which has
led to frugal NLP approaches becoming an im-
portant research topic. Many research teams
struggle to complete projects with limited
funding, labor, and computational resources.
Driven by the Move-Step analytic framework
theorized in the applied linguistics field, our
study offers a rigorous approach to the frugal
use of two human annotators to scale up auto-
coding for text classification tasks. We applied
the Linear Support Vector Machine algorithm
to text classification of a job ad corpus. Our
Cohen’s Kappa for inter-rater agreement and
Area Under the Curve (AUC) values reached
averages of 0.76 and 0.80, respectively. The
calculated time consumption for our human
training process was 36 days. The results in-
dicated that even the strategic and frugal use
of only two human annotators could enable
the efficient training of classifiers with reason-
ably good performance. This study does not
aim to provide generalizability of the results.
Rather, it is proposed that the annotation strate-
gies arising from this study be considered by
our readers only if they are fit for one’s spe-
cific research purposes.

1 Introduction

In natural language processing (NLP), human an-
notation is an indispensable and decisive step. The
human annotation process directly influences the
quality of the training data in NLP tasks, and con-
sequently, it influences the quality of machine-
generated results. In this regard, Song et al. (2020)
have revealed how significant the risk of reaching
an incorrect conclusion could be if the quality of
human annotation used for validation cannot be
guaranteed. Unfortunately, the science of annota-
tion is progressing very slowly (Hovy and Lavid,
2010; Song et al., 2020). In many NLP studies,

methodological details concerning the human anno-
tation process have not been fully disclosed (Song
et al., 2020). Such a lack of disclosure may hinder
readers’ judgment of the soundness of human an-
notation procedures (Hovy and Lavid, 2010; Song
et al., 2020). It is time for NLP researchers to at-
tach greater importance to the methodological rigor
of human annotation in NLP tasks.

Where the funding and labor are limited, institu-
tions or researchers might have to turn to the ‘fru-
gal’ use of human annotators for text labelling tasks.
For instance, Andreotta et al. (2019) acknowledged
the limitation of not being able to afford high com-
putational and labor costs in their machine learn-
ing (ML)-assisted analysis of Tweeter commentary.
Johnson et al. (2018) also point out cost control
that many engineering teams may need to deal with
and emphasize the importance of minimizing labor
cost and required training data to meet target results
in NLP projects. Therefore, well-planned invest-
ment of labor and training resources for NLP and
ML tasks is a topic worth considerable scholarly
attention. We need to investigate how to make the
best use of limited labor and monetary resource to
achieve the optimal machine-generated outcomes,
while preserving methodological rigor.

Crowdsourcing is often put forward as a solu-
tion to the human coder resource problem. Aside
from the fact that crowds are often not experts, this
kind of human annotation is allowed only in some
national contexts, such as in the US (e.g., Munro
et al., 2010; Pavlick et al., 2014). This solution is
not broadly applicable and has ethical implications
with respect to researchers exploiting free or cheap
labor. For instance, such option does not conform
to the requirement for minimum hourly salaries un-
der employment laws in national contexts such as
Australia (Australian Government, 2020). Under
circumstances of regulatory limitations and within
ethical constraints, it becomes necessary to resort
to the frugal use of human annotators to scale up
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data analyses.
Unlike human annotation tasks for ordinary im-

age annotation (e.g., dog vs. cat recognition), many
text annotations require expert knowledge because
they are simply more demanding. For instance,
the labelling of research skills in job ads involved
human annotators who worked as researchers and
educators at universities in Mewburn et al. (2020).
These researchers point out that it can be extremely
time and money-consuming to hire multiple expert
human annotators. In many cases, if annotation pro-
cedures were well-devised, the frugal option gen-
erated results that were as good as the more costly
option (Chang et al., 2017; Cocos et al., 2015).
From the perspective of cost control, a better op-
tion would be to also involve non-expert annotators
with well-designed annotation schemes to reach the
optimal annotation outcomes (Chang et al., 2017).
Therefore, it is in the interest of textual-data sci-
entists to investigate if there is a way to guarantee
the quality of manual annotation with the frugal
use of human coders for automatic textual data
analyses at scale. As many social science disci-
plines (e.g., applied linguistics or sociology) have a
record of excellent human annotation frameworks,
it is worth considering if annotation frameworks
in any of these fields could help us enhance the
methodological soundness for human annotation
process in NLP tasks.

The research questions of this study are
posed as follows:

1. For automatic text classification tasks, how
could we design human annotators’ workshop fru-
gally and at the same time maintain good perfor-
mance of the machine?

2. How could we design the human annotators’
workshop to enable easy identification and fixation
of problems in the human annotation schema?

3. If multiple human annotators were involved,
which annotator’s labelled data should be adopted
for training?

The primary outcomes of this study were as
follows:

1. The frugal use of an expert annotator and a
non-expert annotator generated an averaged Co-
hen’s Kappa of 0.76.

2. The total time investment of our frugal ap-
proach to human annotation was 376 hours (the
time consumed by two human annotators).

3. The frugal use of only two human annota-
tors plus a limited amount of labelled data resulted

in an averaged area under the receiver operating
characteristic (ROC) curve (AUC) score of 0.80.

4. Differentiation of coarse-grained and fine-
grained labels allowed for enhanced interpretability
of the ML performance. It also allowed for strate-
gically hybrid use of multiple human annotators’
labels to optimize the ML performance.

2 Methods

2.1 Data
Our human coders annotated job ad data from a cor-
pus of high research skill intensive job ads of com-
puting and healthcare positions1. In total, 1,800
job ads were chosen randomly from a large corpus
consisted of health-domain and computing-domain
job postings. The word counts of the 1,800 job
ads reached 680,367. The randomly chosen job
ads contained 900 health-domain job ads and 900
computing-domain job ads. As we aimed to mini-
mize the labor and time cost, as well as the amount
of data used for training and validation, the selec-
tion of only 1,800 job ads was based on a balanced
consideration of the machine’s performance and
the time investment on manual annotation.

The job ad corpus was purchased from Burning
Glass Technology Inc. Due to legal constraints, the
data used for this study cannot be shared. However,
it is assumed that our audience would be those who
do not necessarily need to conduct analyses of job
ads, but potentially other text classification tasks.
Alternatively, readers interested in obtaining the
same data for a verification of the results could
contact Burning Glass Technology Inc. directly.

2.2 Ethics
We went through necessary ethics procedures to
avoid potential conflict of interests. We obtained
the approval for the data to be used for our research
purpose. The manuscript of the paper was read by
a legal consultant in our team and a representative
from Burning Glass Technology Inc. to ensure our
publication met contractual agreements. We also
signed an agreement with our human annotators
for clarification of responsibilities and task specifi-
cations. The agreement with the human annotators
was approved by our ethics delegate. Thus, we be-
lieve that ethical issues were mitigated to the best
of our abilities.

1We only analyzed computing-domain and health-domain
job postings because the current paper is part of a large project
to contextualize high-RSI job requirements for pedagogical
purposes.
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2.3 Human Annotators’ Workshop

Our study involved two human annotators for the la-
belling of requirements in job ads. The first human
annotator N1was one of the authors of the paper.
N1 was an expert annotator and a PhD candidate
who held a master’s degree in applied linguistics
with extensive experience in identifying job require-
ments from textual data. The second annotator N2
was hired as a volunteer for our task. N2 held a
master’s degree in finance with experience in clas-
sifying news information, her experience was less
relevant compared to N1. Hence, N2 played the
role of a novice human annotator in the annotators’
team.

Before assigning the job ads to N1 and N2, the
job ad texts were segmented into sentences to be
labelled by the annotators. The purpose of segment-
ing the job ad data into sentences was to reduce
cognitive burdens for both annotators.

It was decided that there should be both coarse-
grained labels and fine-grained labels. The deci-
sion was theoretically driven and inspired by an
inductive analytic framework called ‘Move-Step
analysis’ pioneered by the renowned applied lin-
guist John Swales (1990). Move-Step analysis is
a widely adopted linguistic approach to the sys-
tematic examination of different genres (or text
types). Genre theorists (Miller, 1984; Bhatia, 2014;
Moreno and Swales, 2018) advocate that writing
is a social action, and so a specific genre serves
as a tool to achieve a social purpose that is shared
among a community of practice. In our case, the
purpose of the job ad genre is the communication
of various skills, qualifications and capabilities re-
quired of a particular job vacancy, by the employer
to potential hirees. To achieve an overarching pur-
pose of a genre, writers need to involve conven-
tionally acknowledged components in their writing
(Swales, 1990). Swalesian genre theorists differ-
entiated the conventional textual components of a
genre into coarse-grained moves and fine-grained
steps. The intention of differentiating granular-
ity levels derives from the pedagogical orienta-
tion shared among the Swalesian genre theorists
(Bhatia, 2014; Maswana et al., 2015; Moreno and
Swales, 2018) for clarifying concepts more clearly
in class. Move-step analysis has previously been
applied by NLP researchers such as Chen et al.
(2020) for projects with a strong pedagogical ori-
entation. As argued by Chen et al. (2020), the
provision of coarse-grained and fine-grained con-

ventions embedded in the writing of a genre would
allow students to learn more efficiently. The ped-
agogical orientation of move-step analysis aligns
well with our intention to identify job requirements
to enrich employability training2.

To give the readers a clearer sense of what we
meant by a coarse-grained/move-level job require-
ment label and its associated fine-grained/step-level
labels, we give the example of the job requirement
‘Continuous education’ below:

Coarse-grained/Move-step label:
• Continuous education.
Its associated fine-grained labels:
• Passion & Self-motivation,
• Participation in training,
• Sharing of knowledge,
• Seeking advice, and
• Self-reflection.
Moreover, we assumed that the differentiation

between coarse-grained and fine-grained labels
might have other potential benefits. Having coarse-
and fine-grained labels may speed up the annota-
tion process. In this regard, Tange et al. (1998)
showed that the combination of coarse and fine-
grained labels helped the readers of informatics
process information faster and more accurately.

After introducing move-step analysis and assign-
ing the task to the two annotators, N1 conducted the
first round of annotation of 200 job ads, as she had
the expert skills and knowledge relevant to the task.
It was then decided that the unit to be annotated
could contain multiple labels, as N1 found that the
employers sometimes put multiple requirements in
one sentence. Hence, our task was multi-label text
classification. After N1 finished the first round of
annotation, she came up with a coding schema that
listed all the coarse-grained and fine-grained job
requirement categories, and she gave the schema
to N2. From the second to the last round of annota-
tion, both N1 and N2 were involved in the task. N1
and N2 conducted their annotation tasks individu-
ally. The two annotators used the annotation tool
Dataturks to label the texts.

Overall, there were nine rounds of annotation.
In between every two rounds of annotation, the

2How to use the identified job requirements to enrich em-
ployability training is not covered in the current paper. Our
main focus in this study is still the demonstration of the frugal
use of human annotators. The point of mentioning the align-
ment between our pedagogical aim and the use of move-step
analysis is to advocate a well-justified selection of analytic
framework to be used in human annotators’ workshop to fit
one’s specific research aim.
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two annotators met once to discuss their compared
results. If a high level of inconsistency measured
by Cohen’s Kappa was found regarding a particu-
lar fine-grained label (e.g., Continuous education -
Passion & Self-motivation), N1 and N2 would ran-
domly scan through several inconsistent instances
and give their justifications about why they labeled
in their ways. If the agreement was reached con-
cerning how to label similar instances in the fu-
ture, both of them would write the agreed approach
in their notepads. However, if an agreement was
not reached after their justifications were given,
they would note down the dubious items and leave
them for the next meeting when they labeled more
data and had further justifications to convince each
other.

The inter-rater reliability between the two human
annotators was measured by Cohen’s Kappa. For
assessing coders’ agreement on the annotation of
categorical variables, Hallgren (2013) recommends
Cohen’s Kappa as the measurement. The Cohen’s
Kappa equation was given in (1) as follows:

K =
P (a)− P (e)
1− P (e) (1)

where P(a) denotes the observed percentage of
the human annotators’ agreement and P(e) refers to
the probability that the agreement is met by chance.

After the Kappa was calculated for each coarse-
grained and fine-grained category, we also calcu-
lated the standard error for the calculation of the
95% confidence intervals for the Kappa. The stan-
dard error equation is given in (2) as follows:

αK =

√
P (a)(1− P (e))
N(1− P (e))2 (2)

where N refers to the overall numbers of classi-
fied tokens.

2.4 Machine Learning Methods

The algorithm chosen for running the auto-coding
task was the Support Vector Machine (SVM)
(Cortes and Vapnik, 1995) with the linear kernel.
Linear SVM is a good choice in a low-resource
context (Zhang et al., 2012), such as in ours. Lin-
ear SVM had also a low computational cost and
at the same time good prediction results (Vijayan
et al., 2017). For multi-label text classification
tasks, Linear SVM could have good ability to gen-
erate prediction results close to those generated by

manual efforts (Qin and Wang, 2009; Yang et al.,
2009; Wang and Chiang, 2011).

We involved several steps in preprocessing the
data. As mentioned in the description of the hu-
man coders’ workshop, we segmented the job ad
texts into sentences as labeling units. The classifi-
cation task hence was also at sentence level. There
were 63,504 sentence units overall. The average
number of labels per sentence was 1.8. The seg-
mentation into sentences supported calculation of
the job requirements more accurately. Addition-
ally, we removed stop words (e.g., conjunctions,
articles) from the texts via the stop-word list given
in the Natural Language Toolkit (NLTK) corpus
v.3.5. The data were then put in a machine-readable
format with the word representation tool TfidfVec-
torizer (term frequency times inverse document
frequency) from the Scikit-learn v0.24.1.

We separated the processed data into 70%,
15%, and 15% chunks for the training, testing,
and validation purposes. The ratio of the train-
ing/test/validation sets was based on the conven-
tional practice suggested in Muller and Guido
(2016) and Ng (2020). We were aware of other val-
idation approaches such as K-fold cross-validation
(CV). Considering that the tuning of the hyper-
parameters (e.g., K value and ratio) in other CV
approaches could be time-consuming and compu-
tationally expensive whilst their gain limited (as
in Anguita et al., 2012 and Racz et al., 2021), we
chose to proceed with the frugal option of 70%,
15% ,15% split of the data for train/test/validation.

For the parameter-tuning function of the Lin-
ear SVM classifier, we adopted the GridSearchCV
tool from the Scikit-Learn v0.24.1. More specifi-
cally, the parameters tuned were 1) Loss, 2) Max-
iteration, 3) Tolerance, 4) Fit intercept, and 5) In-
tercept scaling.

The performance of the Linear SVM classifier
was measured by the AUC. The reason that we
chose the AUC is that it, compared to the accuracy,
F1 or other such measurements, was less prone
to biased results from class imbalance (Suominen
et al., 2008; Narkhede, 2018).

After the AUC values were calculated, we also
computed the 95% confidence intervals for our au-
tomatic classifier.

3 Results

The inter-rater agreement measured by Cohen’s
K reached an average of 0.76 (see Section 3.1),
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meaning that most of our manually labeled cate-
gories can be used for making at least tentative
conclusions. The results related to the total time
investment in the human annotation process (see
Section 3.2) suggested that two human annotators,
each working 5 hours a day, would need approxi-
mately 36 days to complete the task. Section 3.3
is concerned with the performance of the two au-
tomatic classifiers trained with data labeled by our
two annotators. Although the two classifiers both
reached an averaged AUC of 0.80, a closer exami-
nation of fine-grained categories revealed potential
room for further improvement to the human annota-
tion schema. These findings posed the question of
whether high-inter rater agreement is more impor-
tant than the ML results’ interpretability. Moreover,
strategic hybrid use of the two classifiers for opti-
mization was introduced in Section 3.3.

3.1 Inter-rater Agreement
The averaged inter-rater reliability measured by
Kappa for all the identified categories reached 0.76
(see Table 1). For the fine-grained categories, the
Kappa ranged from the minimum 0.60 to the max-
imum of 0.94. At the coarse-grained level, the
Kappa range from 0.68 to 0.83. Based on the
Kappa interpretation guidelines suggested by Krip-
pendorff (2018), Kappa values under 0.67 indicate
that any conclusion should not be counted. Values
ranging from 0.67 to 0.80 point to tentative conclu-
sions to be made. Values above 0.80 indicate that
definite conclusions can be made. Based on Krip-
pendorff’s guidelines, it is safe to claim that only 9
out of 72, or 12.5% of the fine-gained categories,
did not reach the standards for making a tentative
conclusion. The rest 87.5% of fine-grained cate-
gories reached the ‘Pass’ Kappa threshold defined
by Krippendorff, which has been deemed among
the strictest (Hallgren, 2013). If we use guidelines
defined by Landis and Koch (1977), who viewed
Kappa under 0.61 as enough for the indication of a
moderate agreement between two annotators, most
of our fine-grained categories can be used for mak-
ing at least tentative conclusions.

3.2 Time Investment in Human Annotation
The annotators reported that averagely they spent
ten seconds annotating each sentence token in the
task when they were fully concentrating on the task.
The two annotators both labelled 63,504 sentence
tokens. Therefore, the total time investment in the
completion of a single-person annotation task was

Table 1: Cohen’s K and the respective 95% confidence
interval (CI) for the inter-rater agreement.
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approximately 177 hours. Suppose a research team
hires two annotators to do the coding task concur-
rently, and both the annotators work five hours a
day. A project of a size comparable to ours might
need about 36 days for the manual labeling to be
completed. We considered such a time span as
reasonably moderate. In addition, if the hired anno-
tators could work for over five hours each day, the
completion of the manual labeling process could be
even faster. The exact hours allocated to a human
annotator per day might vary based on different
research teams’ consideration.

The total labeling hours of the two annotators
were 354 hours. Our corpus contained 826,891
words. Therefore, the approximate time investment
per word for our labelling task was 1.6s. There
were nine rounds of meetings (one hour for every
meeting) plus the two-hour orientation time. Hence,
two-person efforts for orientation and meetings cost
22 hours. In total, our two-annotator labeling task
incurred a 376-hour time investment. Any team
who also wants to use a similar frugal approach to
their human-labeling task would find our results of
interest.

3.3 Performance of the Automatic Classifier

The two automatic classifiers trained and tested
with the data labeled by our two human annotators
both reached an averaged gold-standard AUC value
of 0.80. Table 2 suggest that 58% of the coarse-
grained categories reached AUC values above 0.80
with Machine N1 on data labeled by N1. Around
57% of step-level categories reached AUC values
above 0.8 with Machine N2 on data labeled by
N2. The scores of AUC given by the machine
trained and tested from data labeled by annota-
tor N1 ranged from 0.52 to 1.00. The scores of
AUC given by the machine trained and tested from
data labeled by annotator N2 ranged from 0.58 to
0.99. Interestingly, when we calculated the average
of the AUC results given by Machine N1 trained
and tested on Data N1 for all the fine-grained cat-
egories, the value reached 0.80. Similarly, the av-
eraged AUC results given by Machine N2 trained
and tested on Data N2 reached 0.80, too. This
reminded us of the likelihood that even when a ma-
chine’s performance seems outstanding at a coarse-
grained level, potential problems at a fine-grained
level might be invisible.

Certain coarse-grained categories such as ‘De-
cision makers’ and ‘Public welfare’ were low in

AUC scores. We would pay particular attention to
these categories in our future attempt for contin-
uous improvement. Our approach of identifying
both the fine- and coarse-grained categories proved
to be one that could increase the interpretability of
the results. More specifically, if we had not differ-
entiated between the fine- and coarse-grained cate-
gories, we would not have been able to know where
the problem lay in the human annotation schema.
With the information about which fine-grained cat-
egories did well and which did not, we could allow
more efficient future attempts to drive continuous
improvement on the human coding schema.

When classifier Ni was tested with data labeled
by Nj, most of our fine-grained categories did not
show a large decrease in the AUC. When the drop
was small, we assumed that the two ML classifiers
trained by the two annotators performed almost
equally well. We only found 15 fine-grained cat-
egories to have a relatively large decrease in the
AUC. We used an averaged decrease of 0.05 as the
threshold (a threshold used in Hiissa et al., 2006)
to denote a large decrease in classifier Ni’s perfor-
mance when tested with data labeled by Nj.

These 15 fine-grained categories, which showed
a large decrease in performance were ‘Peer prac-
titioners’, ‘Interpersonal skills’, ‘Safety aware-
ness’, ‘Agility’, ‘Passion Motivation’, ‘Problem
understanding & solving’, ‘Unspecific payment’,
‘Residency’, ‘Refined design’, ‘Change manage-
ment’, ‘Risk management’, ‘Conflict management’,
‘Working in harsh environment’, ‘Resource allo-
cation’, and ‘Medical science subject knowledge’
(Table 2).

These 15 fine-grained categories had good per-
formance with Machine Ni tested on data labeled
by Ni, but Machine Ni on data labeled by Nj gave
a worse performance. This could indicate that the
two human annotators’ inner-rater reliability was
high, but their inter-rater reliability was not as high.
When human annotators face categories like these
15 ones in our study, we recommend a check re-
garding which features the human annotator Ni
deemed as relevant to a category, but the human
annotator Nj deemed as not. For the rest categories
that did not show a large decrease, we recommend
that researchers put Machine Ni into the formal use
if Machine Ni on Data Nj results in less decrease
in the AUC whilst Machine Ni’s performance on
Data Ni is also good. Instead of relying on the
use of a single classifier for classifying all the fine-
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grained categories, the hybrid usage of Machine
N1 and Machine N2 could optimize the classifier’s
performance even if the annotators’ workshop was
frugally designed.

4 Discussion

Our study showed that even the frugal use of only
two human annotators plus a limited amount of
labeled data resulted in an averaged AUC score of
0.80. Nonetheless, the differentiation between the
fine-grained and coarse-grained categories in our
coding schema revealed even the averaged AUC
of 0.80 did not necessarily mean the quality of hu-
man annotation was as good 3. The differentiation
of fine and coarse granularities could enhance the
interpretability of the results. In particular, such
a differentiation provided a straightforward indi-
cation as to where the machine performed well or
not and also where the problems lay in the human
annotators’ coding schema.

Our study had limitations. Although we pro-
vided justifications for all the choices we made in
our methods, there is room to refine our project’s
design (e.g., involving classification of other gen-
res) when we have more resources. Compared to
most previous coding schemas where no differenti-
ation of granularity levels was made, our approach
could allow more to-the-point and efficient fixation
of the human annotation for continuous improve-
ment. Our findings regarding the benefits of having
two granularity levels echo the results in Chen et al.
(2020). Our choice of making the differentiation
between granularity levels counters the suggestion
given by Hovy and Lavid (2010). They argue that
coarser granularity would improve the accuracy of
human annotation results. Nonetheless, Hovy and
Lavid (2010) have mostly used examples of seman-
tic recognition tasks such as verb-sense annotation
to support their argument. Our task of text clas-
sification is different from semantic recognition.
Therefore, it is worth further investigating whether

3The point of constantly mentioning the coarse-grained
categories in this paper is to emphasize how coarse granularity
alone was unable to ensure the optimal performance for our
specific annotation task. Single granularity level has been per-
vasively used in many text classication tasks (Chen et al., 2018;
Da San Martino et al., 2019; Heinisch and Cimiano, 2021).
Nonetheless, recent studies (Chen et al., 2018; Da San Mar-
tino et al., 2019; Heinisch and Cimiano, 2021) suggest that
single granularity cannot guarantee the optimal performance
for certain tasks, which echo our findings here. In addition,
we feel it necessary to keep the coarse granularity because
the high-level categories are always useful when presenting
complex results to the public

it is reasonable to always opt for ‘neutering’ for
all NLP tasks only for the sake of reaching a high
inter-rater agreement regardless of the research pur-
pose.

Our frugal use of one expert annotator and one
non-expert annotators proved to cost moderate an-
notation time whilst generating reasonably good
results. Compared to the recruitment of multi-
ple expert-annotators, our approach certainly was
much less costly. The strategically hybrid use of
automatic classifiers trained by our two annotators
is perhaps comparable to a classifier trained by only
expert annotators. However, such an assumption is
subject to future investigations where appropriate
measures are involved.

Future scholarly attempts could explore this
topic of frugal hybrids of machines and human
experts further to verify our assumption. In this
regard, Fort (2016) and Chen et al. (2020) echo
our thoughts by arguing that a well-devised non-
expert annotator workshop could allow the labeling
quality to be as good as when only expert anno-
tators generate the labeling. Chang et al. (2017)
expressed the concern that writing guidelines for
even simple concepts for non-expert coders can be
very prohibitive, but our approach of mixing both
expert and non-expert coders is less likely to incur
uncertainties and unexpected costs. To drive the
progress of the science of annotation, scholars in
the future might find it interesting to compare la-
beling results generated by pure experts, a mixture
of experts non-experts, and crowdsourced workers
for the same NLP project.

5 Conclusion

In this study, we advocate a methodologically
sound approach to the frugal use of two annota-
tors to conduct human annotation tasks for NLP
projects. Our approach has multiple benefits.
Specifically, the time and resource consumption
of our frugal approach were moderate compared to
the more expensive choice of hiring multiple expert
annotators. Having multiple rounds of annotation
activities and ongoing meetings makes it possible
to make timely justification and adjustments for the
annotation schema. Moderate cost, timely commu-
nication of dubious labels, joint development of
the annotation schema, and reasonably good ML
outcomes are the features of our frugal but theoret-
ically sound approach to human annotation. These
features make the frugal use of minimally two hu-
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Table 2: AUC values and respective 95% confidence intervals (IC) & Drop from Machine Ni tested on Nj.
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man annotators a good alternative to crowdsourc-
ing and expert annotation. Regarding whether or
not to differentiate granularity levels and whether
or not to resort to human annotation frameworks
from non-NLP disciplines in the human annotation
process, our suggestion is that researchers should
make the decision based on specific research pur-
poses. We hope this study could serve as a point
to drive reflection upon the science of annotation
within our NLP community.

Acknowledgement

We are grateful for the support from Emsi Burn-
ing Glass Inc, PostAc®, and ANU CV Discovery
Translation Fund2.0. Our thanks also go to Prof.
Inger Mewburn, Dr. Will Grant, and the anony-
mous paper reviewers for their insightful comments
on this paper. We thank Dr. Lindsay Hogan and
Chenchen Xu for offering us advise on the techni-
cal and legal requirements involved in this study.
We appreciate the anonymous annotator’s contri-
bution in our coders’ workshop. Finally, the first
author would like to thank Australian Government
Research Training Program International Scholar-
ship for supporting her PhD studies.

References
Andreotta, M., Nugroho, R., Hurlstone, M., Boschetti,

F., Farrell, S., Walker, I., and Paris, C. (2019). An-
alyzing social media data: A mixed-methods frame-
work combining computational and qualitative text
analysis. Behavior Research Methods, 51(4):1776–
1781.

Anguita, D., Ghelardoni, L., Ghio, A., Oneto, L., and
Ridella, S. (2012). The ’k’ in k-fold cross valida-
tion. In Proceedings of the 2012 European Sympo-
sium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, pages 441–446.

Australian Government (2020). Fair work: Minimum
wages. Accessed: 2021-07-23.

Bhatia, V. (2014). Analysing genre: Language use in
professional settings. Routledge, London, UK.

Chang, C. J., Amershi, S., and Kamar, E. (2017). Re-
volt: Collaborative crowdsourcing for labeling ma-
chine learning datasets. In Proceedings of the 2017
CHI Conference on Human Factors in Computing
Systems, pages 2334–2346.

Chen, L., Liang, J., Xie, C., and Xiao, Y. (2018). Short
text entity linking with fine-grained topics. In Pro-
ceedings of the 27th ACM International Conference
on Information and Knowledge Management, pages
457–466.

Chen, L., Suominen, H., and Mewburn, I. (2020). A
machine-learning based model to identify phd-level
skills in job ads. In Proceedings of the 18th Annual
Workshop of the Australasian Language Technology
Association, pages 72–80.

Cocos, A., Qian, T., Callison-Burch, C., and Masino,
A. J. (2015). Crowd control: effectively utilizing un-
screened crowd workers for biomedical data annota-
tion. Journal of biomedical informatics, 69:86–92.

Cortes, C. and Vapnik, V. (1995). Support-vector net-
works. Machine learning, 20(3):273–297.

Da San Martino, G., Yu, S., Barron-Cedeno, A., Petrov,
R., and Nakov, P. (2019). Fine-grained analysis of
propaganda in news articles. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing, pages
5636–5646.

Fort, K. (2016). Collaborative Annotation for Reliable
Natural Language Processing: Technical and Socio-
logical Aspects. John Wiley Sons, London, UK.

Hallgren, K. (2013). Computing inter-rater reliabil-
ity for observational data: an overview and tuto-
rial. Tutorials in quantitative methods for psychol-
ogy, 8(1):23–24.

Heinisch, P. and Cimiano, P. (2021). A multi-task
approach to argument frame classification at vari-
able granularity levels. Information Technology,
63(1):59–72.

Hiissa, M., Pahikkala, T., Suominen, H., Lehtikun-
nas, T., Back, B., Karsten, H., Salantera, S., and
Salakoski, T. (2006). Towards automated classifica-
tion of intensive care nursing narratives. Studies in
health technology and informatics, 124:789–794.

Hovy, E. and Lavid, J. (2010). Towards a ‘science’of
corpus annotation: a new methodological challenge
for corpus linguistics. International journal of trans-
lation, 22(1):13–16.

Johnson, M., Anderson, P., Dras, M., and Steedman, M.
(2018). Predicting accuracy on large datasets from
smaller pilot data. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, pages 450–455.

Krippendorff, K. (2018). Content analysis: An intro-
duction to its methodology. Sage publications., New
York, USA.

Landis, R. and Koch, G. (1977). The measurement of
observer agreement for categorical data. Biometrics,
33(1):159–174.

Maswana, S., Kanamaru, T., and Tajino, A. (2015).
Move analysis of research articles across five engi-
neering fields: What they share and what they do
not. Ampersand, 2:1–11.

20



Mewburn, I., Grant, W. J., Suominen, H., and Kiz-
imchuk, S. (2020). A machine learning analysis
of the non-academic employment opportunities for
phd graduates in australia. Higher Education Policy,
33(4):799–813.

Miller, C. (1984). Genre as social action. Quarterly
journal of speech, 70(2):151–167.

Moreno, A. I. and Swales, J. M. (2018). Gstrength-
ening move analysis methodology towards bridging
the function-form gap. English for Specific Pur-
poses, 50:40–63.

Muller, A. C. and Guido, S. (2016). Introduction to
machine learning with Python: a guide for data sci-
entists. O’Reilly, Newton, US.

Munro, R., Bethard, S., Kuperman, V., Lai, V. T., Mel-
nick, R., Potts, C., Schnoebelen, T., and Tily, H.
(2010). Crowdsourcing and language studies: the
new generation of linguistic data. In NAACL Work-
shop on Creating Speech and Language Data with
Amazon’s Mechanical Turk, pages 122–130.

Narkhede, S. (2018). Understanding auc-roc curve. To-
wards Data Science, 26:220–227.

Ng, A. (2020). Coursera: Machine learning by stan-
ford university. Accessed: 2021-07-23.

Pavlick, E., Post, M., Irvine, A., Kachaev, D., and
Callison-Burch, C. (2014). The language demo-
graphics of amazon mechanical turk. Transactions
of the Association for Computational Linguistics,
2:79–92.

Qin, Y. P. and Wang, X. K. (2009). Study on multi-
label text classification based on svm. In Proceed-
ings of the Sixth International Conference on Fuzzy
Systems and Knowledge Discovery, pages 333–304.

Racz, A., Bajusz, D., and Heberger, K. (2021). Effect
of dataset size and train/test split ratios in qsar/qspr
multiclass classification. Molecules, 26(4):1111.

Song, H., Tolochko, P., Eberl, J., Eisele, O., Greussing,
E., Heidenreich, T., Lind, F., Galyga, S., and Boom-
gaarden, H. (2020). In validations we trust? the im-
pact of imperfect human annotations as a gold stan-
dard on the quality of validation of automated con-
tent analysis. Political Communication, 37(4):550–
572.

Suominen, H., Pyysalo, S., Hiissa, M., Ginter, F., Liu,
S., Marghescu, D., Pahikkala, T., Back, B., Karsten,
H., and Salakoski, T. (2008). Performance evalua-
tion measures for text mining. In Song, M. and Wu,
Y., editors, Handbook of Research on Text and Web
Mining Technologies, pages 724–747. IGI Global,
Hershey, USA.

Swales, J. M. (1990). Genre analysis: English in aca-
demic and research setting. Cambridge University
Press, Cambridge, UK.

Tange, H. J., Schouten, H. C., Kester, A. D., and Has-
man, A. (1998). The granularity of medical narra-
tives and its effect on the speed and completeness of
information retrieval. Journal of the American Med-
ical Informatics Association, 5(6):571–582.

Vijayan, V. K., Bindu, K. R., and Parameswaran, L.-
h. (2017). A comprehensive study of text classifi-
cation algorithms. In Proceedings of the 2017 In-
ternational Conference on Advances in Computing,
Communications and Informatics (ICACCI), pages
1109–1113.

Wang, T. Y. and Chiang, H. M. (2011). multi-label
text categorization problem using support vector ma-
chine approach with membership function. Neuro-
computing, 74(17):3682–3689.

Yang, B., Sun, J. T., Wang, T., and Chen, Z. (2009).
Effective multi-label active learning for text classifi-
cation. In Proceedings of the 15th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 916–926.

Zhang, K., Lan, L., Wang, Z., and Moerchen, F. (2012).
Scaling up kernel svm on limited resources: A low-
rank linearization approach. Artificial intelligence
and statistics, 22:1425–1434.

21



Narjes Askarian, Ehsan Abbasnejad, Ingrid Zukerman, Wray Buntine and Gholamreza Haffari. 2021. Curriculum Learning Effectively Improves Low Data
VQA. In Proceedings of the 19th Workshop of the Australasian Language Technology Association. Dec 8–10, 2021.

Curriculum Learning Effectively Improves Low Data VQA

Narjes Askarian
Dept. of Data Science and AI

Monash University

Ehsan Abbasnejad
Australian Institute for Machine Learning

The Univ. of Adelaide

Ingrid Zukerman and Wray Buntine and Gholamreza Haffari
Dept. of Data Science and AI

Monash University

Abstract

Visual question answering (VQA) models, in
particular modular ones, are commonly trained
on large-scale datasets to achieve state of the
art performance. However, such datasets are
sometimes not available. Further, it has been
shown that training these models on small
datasets significantly reduces their accuracy.
In this paper, we propose a curriculum-based
learning (CL) regime to increase the accu-
racy of VQA models trained on small datasets.
Specifically, we offer three criteria to rank
the samples in these datasets, and propose a
training strategy for each criterion. Our re-
sults show that, for small datasets, our CL ap-
proach yields more accurate results than those
obtained when training with no curriculum.

1 Introduction

Visual question answering (VQA) models are com-
monly trained on large-scale datasets to achieve the
state of the art performance (Johnson et al., 2017a;
Antol et al., 2015; Hudson and Manning, 2019).
Modular VQA models, in particular, require large
data sets for training. These models dynamically
combine a number of neural networks according to
a pre-specified layout (Andreas et al., 2016; John-
son et al., 2017b; Yu et al., 2018) to form a new
larger network that produces an answer to an input
question. The layout, or program, is generated for
each question on the fly. As a consequence, the ar-
chitecture of the resulting network varies according
to the program.

Combining neural networks often leads to a wide
and deep network. Training such a large-sized net-
work with a varying architecture calls for a massive
amount of labeled data, which is either expensive
or very limited in many realistic settings. With in-
sufficient data, a large and complex network can
perform unsuccessfully. An example of this is our

experience in training the VQA model by John-
son et al. (2017b) with only 20% of the CLEVR
dataset (Johnson et al., 2017a). Our results showed
only 54.24% accuracy compared to the accuracy
of 96.90% on the full dataset according to the au-
thors’ report (Johnson et al., 2017b). Motivated by
this experience, the work presented in this paper
studies VQA in low data scenarios, and sheds light
on the performance of current modular VQA mod-
els under data scarcity conditions. To the best of
our knowledge, this is the first study to investigate
VQA models in low-data regime.

Many approaches have been investigated to
improve the performance of deep learning mod-
els when training on limited data, ranging from
data augmentations (Zhang et al., 2019) and pre-
training (Erhan et al., 2010) to semi-supervised
learning (Kingma et al., 2014) and transfer learn-
ing (Raina et al., 2007). However, these works
mostly deal with the scarcity of labeled data by
assuming help from available unlabeled data, or
by transferring knowledge from similar domains.
Unlike them, our goal is to train a modular VQA
model from scratch by using only a small amount
of labeled data without using any other resources.

Specifically, we take the CL approach to tackle
the problem of VQA models’ low performance un-
der low data conditions. Curriculum learning (Ben-
gio et al., 2009) was introduced as a method to
supervise the order in which data examples are ex-
posed to the model. Our hope is to maximize the
usage of training samples by performing supervi-
sion on the order of training data that are fed into
the model.

The underlying idea of CL is to start learning
from easy examples, and gradually consider harder
ones, rather than using examples in a random se-
quence. To rank training examples from easy to
hard, CL must define the concepts of easy and hard
examples. Such a ranking is a key challenge in CL.

22



Many of the ranking criteria introduced in the CL
literature are problem-specific heuristics (Liu et al.,
2018) or automated measures based on model per-
formance (Hacohen and Weinshall, 2019). In this
paper, we propose and analyze the performance
of three ranking criteria: (1) a length-based cri-
terion, which considers longer questions as more
complex than shorter questions, and ranks the ex-
amples in increasing order of their program length;
(2) a criterion based on an answer hierarchy, which
organizes all possible answers from coarse to fine;
and (3) a criterion that relies on model loss for de-
ciding about the hardness level of the examples and
ranking them accordingly.

In addition to the ranking heuristics, in §5, we
propose a CL training strategy for each criterion.
We also argue that under CL training in low data
regimes, a model is very susceptible to overfitting
and poor generalization. Employing a regularizer
is crucially important to prevent the model from
becoming over-confident on the training data. We
demonstrate that the proposed training strategies,
when coupled with L2-norm regularization, lead to
a significant improvement in performance, in some
cases over 30% increase in accuracy.

We apply our approach to the model proposed
by Johnson et al. (2017b) as a modular VQA model.
The model originally consists of two main compo-
nents: (1) a program generator that takes a question
and generates a program; and (2) an execution en-
gine that combines neural modules according to
the program in order to create a network to produce
an answer from the input image. Johnson et al.
(2017b) demonstrate that the program generator
can produce acceptable programs by training only
on a small fraction of all possible programs (≤ 4%).
Thus, we focus on training the execution engine in
a low-data setting and use ground-truth programs
as input to the execution engine. To simulate a
low data regime, we use four randomly chosen
small subsets of the CLEVR dataset (Johnson et al.,
2017a) for training. Our results show that our CL
approach yields more accurate results than those
obtained when training with no curriculum.

2 Background

Visual question answering is the task of infer-
ring the answer by reasoning on the input question
and image. Most of the current approaches map
question-image pairs into a cross-modal common
embedding space. A question is usually treated

holistically in such approaches, thus the reasoning
process is hard to explain (Tan and Bansal, 2019;
Lu et al., 2019; Selvaraju et al., 2020).

In contrast, modular approaches perform visual
reasoning by semantically parsing the question and
generating a reasoning chain called a program (An-
dreas et al., 2016; Johnson et al., 2017b). The
program shows the reasoning steps required for
answering the question as a layout for the mod-
ules. The algorithm then combines the modules
according to the program. Modules are small neu-
ral networks treated as single-task functions that
are combined into a larger network to accomplish
a complex job. The resulting network is executed
on the input image to predict the answer.

Modular approaches naturally have a strong po-
tential for interpretability. Hu et al. (2018) showed
human evaluators can more clearly understand their
modular VQA model compared to a non-modular
model (Hudson and Manning, 2018). Thus, we are
interested in studying modular models.

Similar to other VQA models, modular ap-
proaches call for a large amount of annotated data
for both the semantic parser (program generator)
and the executor. This issue has led to recent stud-
ies on sample efficient training strategies, ranging
from multi-task learning (Hu et al., 2018) and ac-
tive learning (Misra et al., 2018) to disentangling
reasoning from vision and language understand-
ing (Yi et al., 2018). For instance, Misra et al.
(2018) propose an agent that, instead of operating
on the training set, interactively learns by asking
questions. Regarding the simulated low data setting
in our work, efficient use of training data becomes
extremely important. We employ curriculum learn-
ing in §4 and §5 as a method of making the best
use of limited available data where a model can
establish its understanding on simple concepts and
gradually develop it by seeing harder examples
over training.

3 VQA Model

In a VQA task, a model receives as input a pair
(x, q) of image x and a question q about the image.
The model learns to select an answer a ∈ A to the
questions from a set A of possible answers.

The VQA model (Johnson et al., 2017b) includes
two main components: a program generator G and
an execution engine E . The program generator
predicts a program p to address a question q. The
execution engine combines the modules according
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Figure 1: Accuracy of vanilla training of the execu-
tion engine on CLEVR val where trained on different-
sized random subsets of the CLEVR train set.

to the program, and executes the obtained network
on the image to produce an answer.

Johnson et al. (2017b) train the model using a
semi-supervised learning approach. They demon-
strate that the program generator can produce ac-
ceptable programs while training on only a small
fraction of possible programs (≤ 4%). To evaluate
E’s performance in a low data regime, we con-
ducted a number of vanilla supervised training ex-
periments with decreasing sized training sets. Note
that we use ground truth program and image pairs
as the input to E in all experiments. Figure 1 shows
the best accuracy of each experiment on CLEVR’s
validation set while the execution engine is trained
on a subset of the CLEVR’s train set e.g., 50%
(See Figure 2 for some examples of the CLEVR
dataset). The results verify execution engine’s poor
performance on the small sized training subsets.

4 Curriculum Heuristics for VQA

Studies introduce various heuristics for measuring
the hardness of examples. Some heuristics define
hardness based on human judgment, in the sense
that an example can be challenging for a machine
if a human finds it difficult. Such criteria take fea-
tures of examples into consideration such as word
frequency and sentence length for texts (Spitkovsky
et al., 2010; Platanios et al., 2019; Liu et al., 2018)
and shape complexity for images (Bengio et al.,
2009; Duan et al., 2020). The ordering of exam-
ples provided by these heuristics is task-dependent
and does not change during training. In contrast,
more general criteria determine the ordering of ex-
amples by incorporating the machine’s response,
e.g., a teacher network supervises the learning pro-
cess (Hacohen and Weinshall, 2019) or the progress
of a model is taken into account (Kumar et al.,
2010; Sachan and Xing, 2016; Zhou et al., 2021).
In this study, we explore the heuristics described in
the rest of this section.

4.1 Curriculum by program length

An intuitive measure of hardness for a VQA task
is based on question length i.e., longer questions
are more complex to be understood and answered
than shorter ones. This assumption has its root in
the observation that a longer question generally in-
volves understanding a larger number of objects
and relations. We consider the length of the pro-
gram corresponding to a question as an indicator
of question length.

Under the program length curriculum, the net-
work is fed with easy-to-hard ranked examples
starting from shorter programs and gradually in-
creasing programs’ length.

4.2 Curriculum by answer hierarchy

Investigating the learning process of E while train-
ing with IID data batching, we hypothesized the
model implicit curriculum to be as follows: the
model quickly learns to correctly predict the type
of the answers, e.g., color, size or digit. However,
the more distinct values each type includes, the
longer it takes for the model to distinguish them.
For instance, the model needs a longer time to dis-
tinguish between eight different color values com-
pared to large and small as the values of size. We
also assume that the model struggles to identify
visual features that are hard to detect, regardless
of the number of distinct values, e.g., whether the
material of an object is metal or rubber.

Motivated by the above observations, we define
another measure based on a hand-crafted answer hi-
erarchy in order to shift the focus from questions to
answers. The higher level in the hierarchy includes
a coarser categorization of each answer type, and
the answer types are vertically extended downward
to finer classes of types. In other words, the direct
link between an answer type and its values is inter-
leaved with intermediate levels of abstraction, e.g.,
digit at a lower level is divided into three groups,
such as ’0’, ’1’ and many. This classification splits
into finer groups toward the bottom of the path.
The details of the hierarchy are given in Appendix
A of the supplementary material.

4.3 Curriculum by hard examples

The intuition of this heuristic is to focus training on
the hard examples where the learner does not per-
form well and consequently the loss is high. The
notion of hardness is considered dynamic, as a hard
problem tends to be deemed easier while it is be-
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Easy Q: There is an object

that is both right of the yellow

rubber object and behind the

large brown thing; what is its

color? A: cyan

Medium Q: What number

of large objects are cyan metal-

lic spheres or yellow spheres?

A: 0

Hard Q: What size is the

metal block right of the brown

metal thing right of the blue

thing in front of the small blue

rubber thing? A: large

(A) Easy Question (B) Medium Question (C) Hard Question

Figure 2: Examples of easy, medium and hard questions according to their H scores. The proposed heuristics do
not always agree. According to the length-based heuristic, example A is harder than example B.

Hardness Epoch

1 10 25 50 75 98

Easy 0.90 0.81 1.16 0.93 1.16 1.12

Medium 5.49 1.87 2.31 1.40 1.33 1.27

Hard 11.78 3.57 1.74 1.10 0.94 1.40

Table 1: Hardness scores at different epochs. The hard-
ness scores decrease as training progresses.

ing understood. Following Zhou et al. (2020), we
employ a dynamic hardness criterion based on the
running average of instantaneous hardness, which
is defined as the loss difference between two con-
secutive training iterations.

Let (xi, pi) be the ith image-program pair as
a training example with the ground truth answer
ai. The instantaneous hardness rt(i) of (xi, pi) at
time-step t is defined as follows:

rt(i) = |`t(ai−E(xi, pi;wt))−`t−1(ai−E(xi, pi;wt−1))|
(1)

where t represents training epochs.
The hardness score of an example is obtained by

recursively computing a running average over in-
stantaneous hardness, which reflects the dynamics
of hardness,

Ht+1(i)=

{
γ × rt(i) + (1− γ)×Ht(i) if i ∈ St
Ht(i) else

(2)

where γ ∈ [0, 1] is a discount factor, and St ⊆
{(x1, p1), ..., (xN , pN )} is a subset of the training
set selected at each training step according to a sam-
pling strategy. We employ the strategy of Johnson
et al. (2017b), which uses a probability function
based on the hardness score H . This function fa-

vors harder examples so long as the probability of
selecting easy examples is not zero.

Once a sample is used to train the model, its H
score becomes small and it stays low relative to the
other samples. Thus samples’ H score converges
during training and remains consistent. This gives
the unselected samples a higher chance to be se-
lected by the sampling function in the future steps.
Figure 2 shows three samples with low, medium
and high H scores (denoted as easy, medium and
hard questions) at the first iteration and Table 1 lists
their corresponding H scores during training. It is
clear that the H score is decreasing over training
until convergence.

5 Curriculum Learning for VQA

We describe now our training procedure. A generic
curriculum learning requires a modelM and a train-
ing dataset D as inputs. It also requires the exis-
tence of a hardness criterionN , a curriculum sched-
uler E, a selection function L, and a performance
measure P .

According to traditional curriculum learning, at
every training iteration, the scheduler E decides
when to update the curriculum. Curriculum learn-
ing is applied on top of the conventional training
loop in machine learning. The output of each train-
ing loop is usually the model’s performance mea-
sure, which may be used by the scheduling function
L to specify the appropriate moment for modify-
ing the curriculum. The scheduler can also decide
merely based on the number of training iterations.
A curriculum update typically includes re-ranking
training examples according to the hardness cri-
terion N . In the next step, the algorithm selects
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Algorithm 1 Scheduled Training with Curriculum
1: E : execution engine
2: {(xi, pi, ai)}ni=1: training examples
3: γ: ∈ [0, 1], discount factor for reducing subset size
4: T : number of iterations
5: T0: number of warm-starting iterations
6: procedure HEMTRAINING
7: for t ∈ {1, ..., T} do
8: if t ≤ T0 then . Phase1: Warm-starting
9: St = [n]

10: else . Phase2: Hard example mining
11: for i ∈ {1, ..., n} do
12: pi = Ht(i) + Ct(i)
13: end for
14: Normalise(pi)
15: St←sample kt district elements fromCategorical(~p)

16: wt←wt−1+π

(
∇w

∑
i∈St

`(ai,E(pi,xi;wt−1))

)

17: end if
18: Compute rt(i) for i ∈ St using Eq. (1)
19: Update Ht+1(i) using Eq.(2)
20: kt+1 ← γk × kt
21: end for
22: end procedure

a subset D∗ of the training set D, which will be
used by the model in the next round of training.
The selection function SF can utilize different ap-
proaches, e.g., weighting (Liang et al., 2016; Zhou
et al., 2020), sampling (Zhou et al., 2021) or batch-
ing (Yong Jae Lee and Grauman, 2011).

Training by length-based curriculum. We de-
sign a CL training strategy for the length-based
curriculum by equipping the CL training with a
batching method as the selection function and a
linear paced scheduler. The scheduler controls the
curriculum update at a linear pace, i.e., a hyper-
parameter specifies the number of iterations for
learning a curriculum.

Training by answer hierarchy curriculum.
Our proposed training algorithm for the answer hi-
erarchy curriculum takes advantage of a simple self-
paced scheduler based on the model performance.
Specifically, the scheduler updates the curriculum
where the normalized difference of accuracy be-
tween two consecutive iterations goes higher than
a predefined threshold.

Training by hard examples curriculum. This
training strategy suggests training the model in two
phases. The first phase is a warm-up phase, where
the model sweeps all training examples. The next
phase is curriculum training, where the model ranks
the examples according to their hardness and learns
a selected subset of them.

Algorithm 1 summarizes our training approach.

To encourage diversity, we add a submodular opti-
mization C to the hardness score in line 12, which
is inspired by Zhou and Bilmes (2018). Since this
can be any submodular function, we choose a func-
tion based on the similarity between examples,

max
St

∑

i∈St
Ht(i) + λtC(St) (3)

where C(St) =
∑

i,j∈St wi,j and wi,j represents
the similarity between example i and j. The pref-
erence for diversity can be controlled by λt. We
gradually reduce it during training to further focus
learning on hard examples. The input to C is a
representation of a data point that can be a fusion
of both text and image modalities. For this, we use
the output of the model’s penultimate layer as the
representations of the examples.

Instead of deterministically choosing the top
k samples based on H , we randomly select the
examples for the next round of training with the
probability pt,i ∝ f(Ht−1(i)) where f(.) is a non-
decreasing function, similar to Zhou et al. (2020).
This probability function favors hard examples,
yet selecting easy ones is possible. At early train-
ing, when the H scores are poorly estimated, f(.)
should encourage exploration, and move toward
more exploitation as training progresses and H es-
timation is becoming more accurate. We balanced
the trade off between exploration and exploitation
using the upper confidence bandit (UCB) algorithm,
similar to Auer et al. (2003) and Zhou et al. (2020),

f(i, t) = Normalized
[
Ht(i) + c

√
log T/Nt(i)

]

where T is the number of iterations, and Nt(i) is
the number of times that the ith sample has been
selected prior to time step t. UCB controls the de-
gree of exploration by the hyper-parameter c which
we set as 0.001 in our implementation.

5.1 Improved Curriculum Learning
The idea of learning the answers in a non-random
ordering as what happens in CL has been shown to
be helpful for the learning process in many cases.
However, this idea has one essential deficiency. It
focuses on a particular subset of questions early
and is not exposed to a diverse set of questions.
When a new question arrives, the algorithm strug-
gles to adjust to it, as the learned representations fit
the previous questions. This problem exacerbates
in low data settings. Many studies highlight the
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importance of selecting a diverse set of examples
as a solution to this issue (Sachan and Xing, 2016;
Zhou and Bilmes, 2018), and the CL algorithm gen-
erally benefits from diversity in training examples.
However, as confirmed by our experiments (§6.4),
it does not prevent the model from overfitting. We,
therefore, explore the effect of other techniques of
regularizing such as dropout and L2-norm.

6 Experiment
We use our implementation of the execution engine
model (Johnson et al., 2017b). A vanilla training
of the model posts the lowest threshold of the per-
formance in our setting. We also implemented and
compared the three heuristics for the hardness cri-
terion: program length (§4.1), answer hierarchy
(§4.2) and hard example (§4.3). The length-based
curriculum can be seen as a baseline to the answer
hierarchy criterion, while both of them play the
role of baseline for the hard example curriculum.
We do not compare with the state of the art, because
the goal of our paper is to study VQA in a low-data
regime, and to the best of our knowledge, there
is no other work that conducts similar research.
Thus, we focus on improving the performance of
our baseline models.

We assessed our baselines under the following
conditions: i) No-Reg when no regularizer is ap-
plied. ii) Dropout when we apply dropout tech-
nique to the final linear layer (classification layer)
in E . iii) L2-norm when L2-norm regularizer is
applied as a weight decay to the optimizer.

6.1 Dataset
We evaluate our approach on the CLEVR
dataset (Johnson et al., 2017a), which provides
a training set with 70k images, ∼ 700k (x, q, a)
tuples and 32 answer classes. To simulate a low-
data regime, we randomly sample four subsets of
different sizes from CLEVR train. The size of
the subsets are 5%, 10%, 15% and 20% of the
full trainset, which contain 35k, 70k, 105k, and
140k (x, q, a) tuples respectively. We call these
subsets s-CLEVRp, where p denotes the percent-
age of the subset size wrt train, e.g., s-CLEVR15

refers to the subset of size 15% of train. As
CLEVR train and CLEVR val(the evaluation
set) have similar answer distributions, to perform
a fair comparison, it is important that the sampled
subsets also have similar answer distributions. Our
evaluation is conducted on the valsplit, which con-
tains ∼ 150k questions and 15k unique images.

6.2 Baselines

No-CL is used as the vanilla baseline where the
execution engine is trained with an IID sampling
on s-CLEVR subsets without any curriculum. In
other words, the model sees all examples in the
training set at every iteration.
Length-CL follows a linear paced scheduler when
training the execution engineunder the length-based
curriculum (4.1).
AnswerH-CL makes use of a self-paced sched-
uler based performance measurement and the an-
swer hierarchy curriculum (4.2). The curriculum
updates if the changes in normalized accuracy be-
tween two consecutive iterations are higher than a
pre-specified threshold. A batching function selects
the sampled for every training iteration.
HardEx-CL uses the hard example heuristic 4.3
as the criterion of ranking data and follows the al-
gorithm 1 for training. Unless stated otherwise, we
use HEM-CL in all ablation analysis experiments.

6.3 Implementation Details

The execution engine uses the images features
from conv4 of ResNet-101 (He et al., 2016) pre-
trained on ImageNet (Deng et al., 2009). We use
Adam (Kingma, 2015) with a fixed learning rate of
1e−4 to optimize the first three baselines and a cyclic
cosine annealing learning-rate schedule to optimize
HEM-CL. In the case of the experiments that use
L2-norm, a weight decay of 5e− 4 is added to the
ADAM optimizer. We also use dropout = 0.5 for
some experiments.

6.4 Results and Discussion

Curriculum heuristics’ effect. We evaluate the
impact of our proposed training strategies with the
three heuristics by looking at their performance on
CLEVR valin Table 2 while training on s-CLEVR
subsets. As the table shows, using the length-
based curriculum yields poor accuracy almost in
all cases of s-CLEVR training subsets with and
without regularization. An explanation for this
could be overfitting. As mentioned, overfitting is a
serious challenge in low data training.

According to our analysis, there is a high chance
for the model to overfit some modules because they
are more likely to appear in the first positions of a
program. Figure 3 depicts the frequency of mod-
ules’ appearance in various positions of programs
in about 28k programs. These modules are com-
monly related to an anchor object in a question,
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Method No-Reg Drop-out L2-norm

5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

No-CL 46.91 48.77 49.68 51.25 46.94 48.36 49.67 49.92 46.71 50.25 52.20 54.34

Length-CL 46.55 46.67 47.83 48.12 46.68 47.33 47.61 47.71 47.89 49.65 50.98 51.50

AnswerH-CL 47.42 48.59 49.73 51.65 47.43 47.73 48.60 50.24 48.62 49.03 48.70 48.95

HardEx-CL 47.93 50.04 51.97 53.14 48.80 49.94 51.69 56.29 48.95 51.49 53.27 87.62±1.3

Table 2: The execution engine accuracy (%) on CLEVR valwhen training on s-CLEVR5, s-CLEVR10,
s-CLEVR15 and s-CLEVR20 with three different choices of curriculum. The length-based (Length-CL) and
answer hierarchy (AnswerH) curriculum does not improve the performance while hard example (HardEx-CL)
outperforms the vanilla baseline (No-CL) in all experiments.

where other objects are described by their relation
to this object, e.g., the yellow thing is the anchor in
the question “What is the size of cube to the right
of the yellow thing”. To identify the cube and de-
termine its size, one must find the yellow thing, and
attend to the objects on its left side. Since objects
are normally described by attributes such as color,
size and material, attribute-related modules tend to
appear at the beginning of a program.

Ranking programs by their length makes the
model focus on a limited number of modules dur-
ing early training, which increases the chance of
overfitting. The model thus struggles with learn-
ing other modules when they appear later in longer
programs. According to the results, dropout and
L2 regularizations do not effectively prevent over-
fitting where the curriculum forces the model to
over-concentrate on such structural biases in data.

Answer hierarchy curriculum makes a
marginal improvement on some subsets partic-
ularly s-CLEVR5. Hard example curriculum
produces impressive results, improving the
baselines in all cases. The result verifies the
effectiveness of emphasizing hard examples in
low data regimes where due to the limited size of
data and its large capacity, a deep network tends
to memorize easy data points without actually
learning a pattern. Forcing the model to focus
on hard examples induces a form of implicit
regularization. Additionally, the self-pacing
feature of the curriculum allows the algorithm to
update the curriculum based on its progress.

Table 2 also shows that HardEx-CL method
does not produce the best accuracy per se. Regard-
ing that the table reports the average results, it is
noteworthy to mention that the best accuracy we
achieved in the case of HardEx-CL is 88.83 score
in accuracy where the weights are uniformly ini-
tialized and L2-norm is used for regularization. In

Figure 3: Frequency of modules appearance in differ-
ent positions of programs. Some modules are more
likely to appear at the first positions.

fact, the regularization causes a huge rise in accu-
racy. The next paragraphs look into the reasons
that our regularization choice effectively boosts the
HardEx-CL approach.

Regularization impact. To investigate the im-
pact of different regularizers we conducted abla-
tion studies by applying L1-norm in addition to L2
and drop-out regularization. Table 3 shows that in
contrast to dropout and L1-norm, using L2 regular-
ization results in improved performance in almost
all experiments. To investigate the role of L2 regu-
larization in CL training, we conducted an ablation
experiment on the selected examples in HardEx-
CL algorithm with and without L2-norm. First, we
record the hardness measures of selected examples
at every epoch Ht(i) and split the range of mea-
sures into three categories, easy, medium and hard.
The population distribution of examples by their
hardness measure has a long tail. This long tail
is excluded from the splitting and categorized as
very hard. We then calculate the proportion of each
category in the selected examples at 100 epochs as
plotted in Figure 4.

These plots provide insight into the behavior of
L2 regularization. Specifically, we observe that ex-
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Figure 4: The proportion of different hardness categories in selected examples at 100 epoch in case of with and
without L2 regularization. The regularization prevents forgetting by forcing the algorithm to incorporate more easy
samples in the training set.

No-Reg Drop-out L1-norm L2-norm
No-CL 51.25 49.92 45.12 54.34

CL 53.14 56.29 46.79 86.65

Table 3: The impact of different regularizer on HardEX-
CL accuracy when training on s-CLEVR20.

cept for the easy category, the proportion of exam-
ples from other categories is higher for all epochs.
It can be explained by the fact that HardEx-CL
algorithm draws model attention to hard examples
during training. As the model is learning the exam-
ples, their corresponding hardness measure is de-
creasing so that they finally are learned and consid-
ered as easy. Without using L2 regularization the
model overly focuses on learning hard examples
and as a consequence forgets the learned patterns of
easy examples. L2-norm protects the model from
forgetting such patterns by incorporating in loss
and forcing the sampling function to also samples
more from easy category.

Figure 5: The accuracy of HardEx-CL algorithm on
CLEVR valwhere execution engine weights is uni-
formly initialized and trained on s-CLEVR15,20,25,30.

Why is there a jump in the accuracy of HardEx-
CL with L2 regularization when training on
s-CLEVR20? Looking closely at the learning
curve of vanilla training in Figure 1 reveals that the
execution engine performance experiences a jump

using training subsets larger than 20%. Different
shapes of learning curves are defined in learning
theory (Ebbinghaus, 1913; Bills, 1934). The S-
curve that we can see here is the idealized general
form of learning where the learner slowly accumu-
lates small steps at first followed by a steep up stage
with larger steps and the smaller steps successively
occur to level off the curve. Due to lack of data, we
do not see this performance gap when training on
s-CLEVR5−20. L2 regularization, however, stim-
ulates the jump to happen earlier in HardEx-CL.
To investigate it further, we run HardEx-CL with
four training subsets of different sizes including
15%, 20%, 25% and 30% and report the accuracy
on CLEVR valin Figure 5. All settings are similar
to HardEx-CL with L2-norm in Table 2 except the
weights are uniformly initialized. From these exper-
iments, we observe the jump in the training set for
even s-CLEVR15 other than larger subsets. This
shows the tipping point in the training can accrue
earlier depending on the algorithm and settings.

7 Conclusion

This paper studied VQA in low data settings and
shed light on the low performance of VQA models
under the data scarcity condition. To improve the
performance, we propose three curriculum learn-
ing approaches based on length, answer hierarchy,
and hard examples. We also stressed the prob-
lem of overfitting and poor generalization that be-
comes crucially important in the absence of suffi-
cient data. We explored the effect of using gener-
alization techniques on a models’ performance in
low data regimes. Our results show that the pro-
posed CL algorithms outperform the baseline in
many cases while fail in some others. However, the
algorithms when coupled with L2 regularization
lead to improvements.
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Supplementary Material

We describe more key implementation details of
our work in the ensuing sections.

Appendix A: Curriculum by answer
hierarchy

As mentioned in §4.2, the answer hierarchy, shown
in Figure 6, classifies the answers at different hierar-
chical levels. Specifically, we defined intermediate
levels between answer types and their values. The
intermediate levels are employed as the higher level
pseudo answers to the questions. According to the
curriculum, the algorithm maps the true answer to
the higher levels pseudo answers in order to grad-
ually guide the predicted answers from a coarse
level to a more specific one. When the scheduler
decides to update the curriculum, several nodes are
expanded to the next level, i.e., the model is ex-
posed to the finer level of an answer type. We do
not force the curriculum to simultaneously expand
all of the nodes that are at a similar level of the
hierarchy. Instead, we assign a number to every
node that determines the expansion time in terms
of curriculum update round. Specifically, a node is
expanded when the count of the curriculum update
is matched with its assigned number. For instance,
the node ‘size’ is expanded to its children ‘small’
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and ‘large’ in the second round of curriculum up-
date if number 2 is assigned to the node ‘size’. This
provides a degree of freedom for the algorithm to
gradually learn the answers. Although we statically
specify these numbers in our algorithm, they can
be implemented as learnable parameters, which we
leave to future work. Learning expansion times
helps the model move the curriculum further at its
pace.
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Figure 6: A schematic view of the answer hierarchy used as the base of a curriculum.
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Abstract

The current study provides a diachronic anal-
ysis of the stereotypical portrayals concerning
seven of the most prominent foreign national-
ities living in Spain in a Spanish news outlet.
We use 12 years (2007-2018) of news articles
to train word embedding models to quantify
the association of such outgroups with drug
use, prostitution, crimes, and poverty concepts.
Then, we investigate the effects of sociopoliti-
cal variables on the computed bias series, such
as the outgroup size in the host country and the
rate of the population receiving unemployment
benefits. Our findings indicate that the texts
exhibit bias against foreign-born people, espe-
cially in the case of outgroups for which the
country of origin has a lower Gross Domestic
Product per capita (PPP) than Spain.

1 Introduction

Languages are complex and systematic instruments
of communication that reflect the culture of a given
population. By studying language, it is possible
to observe stereotypes, a type of social bias that is
present when discourse about a given group over-
looks the diversity of its members and focuses only
on a small set of features (Sánchez-Junquera et al.,
2021; Tajfel et al., 1964). As such, language analy-
sis is a good way to depict, understand, and demon-
strate stereotypes (Garg et al., 2018; Basow, 1992;
Wetherell and Potter, 1993; Bonilla-Silva and For-
man, 2000). Nonetheless, like society, languages
are not static. Variations in lexical systems can
be observed over time due to a myriad of intra-
and extra-linguistic factors. By analyzing extra-
linguistic aspects, it is possible to gain insights
into the dynamics of social, cultural, and politi-
cal phenomena reflected in texts (Marakasova and
Neidhardt, 2020).

Efficient methods for performing diachronic
analysis are crucial, as manually evaluating sev-
eral years of text collections is unfeasible due to

the large amount of data involved. As such, compu-
tational methods for diachronic linguistic analysis
are of utmost importance, and ongoing research
shows that word embeddings models are helpful
tools to this end (Garg et al., 2018; Kroon et al.,
2020; Hamilton et al., 2016; Kutuzov et al., 2018;
Lauscher et al., 2020).

Word embeddings are powerful representations
of language, that allow for the quantification of re-
lationships between words through efficient numer-
ical operations inside the vector space. In this con-
text, previous works demonstrated that such models
contain machine-learned biases in their geometry
that closely depict societal stereotypes (Bolukbasi
et al., 2016b; Gonen and Goldberg, 2019; Garg
et al., 2018; Kroon et al., 2020), which is not sur-
prising since stereotypes are massively present in
texts used to train computational models (Sánchez-
Junquera et al., 2021; Nadeem et al., 2020). Al-
though such language models should be carefully
tested for biases and not blindly applied to widely
computational applications due to ethically con-
cerning outcomes (Papakyriakopoulos et al., 2020;
Brandon, 2021; Bender et al., 2021), they can be
a valuable tool for enabling sociolinguistic anal-
ysis on large volumes of textual data. This topic
establishes a collaboration between computer sci-
ence, social sciences, and linguistics, as hypotheses
about social phenomena can be tested on language
using computational methods.

In this study, we analyze the dynamics of stereo-
typical associations with seven nationalities, in the
period of 2007 to 2018. We train our word em-
bedding models using 1,757,331 news articles pub-
lished in the Spanish newspaper 20 Minutos, for the
aforementioned time span. We adopt a culturally
diverse perspective by taking into account some of
the most representative foreign nationalities that
lived in Spain in the aforementioned period accord-
ing to the Instituto Nacional de Estadística (INE)1.

1“National institute of Statistics” https://www.ine.es/
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Namely, British, Colombian, Ecuadorian, German,
Italian, Moroccan, and Romanian are included in
this study.

We conduct a fine-grained analysis, studying
the association of such nationalities with drug use,
prostitution, crimes, and poverty concepts. Then,
we compare our findings with sociopolitical vari-
ables, such as survey items from the European So-
cial Survey (ESS), number of residents by nation-
ality living in Spain, the rate of the population
receiving unemployment benefits from the Spanish
government, and the number of offenses committed
in Spain by outgroup background. Additionally, we
investigate the effect of the outgroups’ countries
of origin having a lower Gross Domestic Product
per capita (PPP) than the host country (Spain)2. To
account for both group effects and error correlation,
we use multilevel Random Effects (RE) models in
our analysis.

This paper is organized as follows. In Section 2
we discuss related works. Subsequently, in Section
3 we state our research questions, present metrics,
data, model training, and evaluation. Section 4
comprises the findings and discussion about re-
sults derived from this study. Finally, in Section 5
we present our conclusions, limitations, and future
work.

2 Related Work

Word embeddings showed as a valuable tool, by
means of enabling efficient methods for analyzing
and quantifying linguistic and social phenomena in
natural language. In the context of model stereo-
typical bias analysis, which is the focus of this pa-
per, the first disseminated studies concern gender
bias (Bolukbasi et al., 2016a,b; Zhao et al., 2018;
Gonen and Goldberg, 2019; Park et al., 2018; Zhou
et al., 2019). Nonetheless, biases can exist in many
shapes and forms, which can lead to unfairness
in subsequent downstream tasks (Mehrabi et al.,
2019).

Garg et al., used both pre-trained models and
models trained with the New York Times Anno-
tated Corpus to quantify gender and ethnic stereo-
types in 100 years of data for the English language.
The reported bias series showed strong correlations
with census data and demographic changes in the
United States for gender and ethnic stereotypes.
Similarly, Kozlowski et al. analyzed English em-

2According to the Data World Bank
https://databank.worldbank.org

bedding models, but focusing on social class biases.

Most works concerning the study of machine
learned biases have English as target language,
since there is more availability of linguistic re-
sources that favors such analysis. Here we cite
four relevant works conducted on non-English
target languages. Wevers quantified gender bi-
ases in 40 years of Dutch newspapers categorized
ideologically as liberal, social-democratic, neu-
tral/conservative, Protestant, and Catholic. The re-
sults depict differences in gender bias and changes
within and between newspapers over time. Tripodi
et al. investigated the antisemitism in public dis-
course in France, by using diachronic word embed-
dings trained on a large corpus of French books
and periodicals containing keywords related to
Jews. Using the changes over time and embed-
ding projections, they tracked the dynamics of an-
tisemitic bias in the religious, economic, sociopo-
litical, racial, ethnic and conspiratorial domains.
Sánchez-Junquera et al. detected stereotypes to-
wards immigrants in political discourse by focus-
ing in the narrative scenarios, i.e. the frames, used
by political actors. They propose a taxonomy to
capture immigrant stereotype dimensions and pro-
duced an annotated dataset with sentences that
Spanish politicians have stated in the Congress of
Deputies. Such dataset was used to train classi-
fiers that detect and distinguish between stereotype
categories.

More similar to ours, is the work of Kroon et al.
In their study, the authors quantify the dynamics of
stereotypical associations with different outgroups
concerning low-status and high-threat concepts in
11 years of Dutch news data. The authors investi-
gate both time invariant and time variant hypothe-
ses, focusing on the difference of associations re-
garding the group membership (ingroup vs out-
groups).

Our study distinguishes itself from the afore-
mentioned studies by (i) the interdisciplinarity with
social survey research, as the selected survey ques-
tions measure attitudes of Spanish people (the in-
group) towards immigrants (the outgroups) and
can be interpreted as a proxy for cultural/economic
threat perception; (ii) our choice of multilevel mod-
eling (RE model), to combine types of phenomena
(linguistic and social) and account for group effects;
and (iii) the use of fine-grained lists representing
crimes, drugs, poverty and prostitution concepts to
investigate stereotypical portrayals. Additionally,
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we contribute to the scarce literature on stereotypi-
cal bias analysis with non-English data sources by
using Spanish from Spain as a target language.

3 Method

In this work, we aim to study the dynamics of
the stereotypical portrayals of British, Colombian,
Ecuadorian, German, Italian, Moroccan and Roma-
nian nationalities with drugs, prostitution, crimes,
and poverty concepts, which are some of the stereo-
typical frames associated to immigrants in the liter-
ature (Neyland, 2019; Kroon et al., 2020; Warner,
2005; Igartua et al., 2005; Light and Young, 2009).
We investigate the effect that the Gross Domestic
Product per capita (PPP) of the outgroup’s coun-
try of origin has in the strength of stereotypical
association. Namely, our hypothesis is that out-
groups coming from countries with lower PPP than
the host country (Spain), are more strongly asso-
ciated with such concepts, due to posing a greater
economic threat to the ingroup (Meuleman, 2011;
Manevska and Achterberg, 2013)3.

Then, we evaluate to what extent our findings
can be explained by (i) the number of residents
per nationality in Spain (i.e, the size of outgroup);
(ii) rates of population receiving unemployment
benefits; (iii) the number of offenses committed
in the Spanish territory by outgroup background
and; (iii) public opinion. In order to investigate
such hypothesis, we adopt the following metrics,
procedures and data.

3.1 Metrics
Distributional semantic models maintain the prop-
erties of vector spaces and adopt the hypothesis
that meaning of a word is conveyed in its co-
occurrences. Therefore, in order to measure the
similarity between two given words represented
by the vectors v1 and v2 we can apply the L2 nor-
malized cosine similarity, although as shown by
Garg et al., one could apply the Euclidean distance
interchangeably.

To quantify social stereotypes in the trained
word embedding models, we used a metric referred
throughout this paper as bias score, which is the
same metric used in Garg et al.. Such metric has
been specifically chosen because it has been ex-
ternally validated by the authors through correla-
tions with census data. The bias score captures the

3The PPP of the Italian outgroup for the 2007-2018 period
is only slightly higher while it is considerably higher for the
British and German nationalities

strength of the association of a given set of words S
with respect to two groups v1 and v2. Hence, when
we state that a word is biased toward a group, it is
in the context of the bias score metric. The bias
score equation is computed as in Equation 1, where
S is a set of word vectors that represent a concept
of interest (e.g., crimes), v1 and v2 are the averaged
group vectors for word vectors in group one and
two, respectively. An averaged group vector is com-
puted by simply averaging the word vectors that
compose a given group. The more negative that the
bias score is, the more associated S is toward group
two whereas the more positive, the more associated
S is towards group one.

bias score =
∑

vs∈S
cos(vs, v1)− cos(vs, v2) (1)

To refer to the representation of the outgroups in-
side of the context of the embedding model and the
bias score metric throughout this paper, we will use
the name of the nationality in italics (e.g., Spanish,
Moroccan).

We compare the similarity of concepts (i.e., word
lists) related to drugs, prostitution, crimes and
poverty to the concepts that represent the ingroup
and the outgroups. For instance, if the word vector
that represents the adjective

−−−−−−−−→
delincuente (“delin-

quent”) is more strongly associated with the word
vector −−−−−→rumano (“Romanian”) than with the word
vector

−−−−−→
español (“Spanish”), that suggests there is

bias in the model. It is not the similarity between−−−−−−−−→
delincuente and−−−−−→rumano that determines the pres-
ence of bias, but the fact that the distances between
−−−−−→rumano and

−−−−−→
español are not equal regarding the

adjective
−−−−−−−−→
delincuente.

3.2 Corpus
We compiled the Corpus of Spanish news 20 Minu-
tos (Razgovorov et al., 2019). The corpus contains
14 years of articles written in Spanish from Spain,
comprising 711.840.945 distinct words, that were
web-scraped from the newspaper 20 Minutos4 web-
site in JSON format. Due to the limited availability
of data measuring the sociopolitical indicators of
interest (stated in the next subsection), we consider
the years 2007 up to 2018 in our analysis.

According to a survey made in 2017 by Cardenal
et al., about 40% of the consulted experts in the
areas of political science and information science in

4https://www.20minutos.es/
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Figure 1: Number of documents and sentences per year
in the 20 Minutos data included in the analysis.

Spain consider 20 Minutos is a neutral paper. The
Figure 1 shows the number of articles and sentences
per year in the corpus. Noticeably, for the years
2007 up to and including 2009 there is less data
than for the subsequent years. We preprocessed the
corpus, lower casing words, removing punctuation
and numbers. Then, we filtered the data to create a
dataset for each year of the corpus.

3.3 Sociopolitical variables

To build a sociopolitical indicator of ethnic threat
perception, we use the mean score of three sur-
vey items from the European Social Survey (ESS)
(NSD, 2020) studies (2006, 2008, 2010, 2012,
2014, 2016 and 2018). We used the Spanish re-
spondent’s answers (applying sample weights pro-
vided by ESS) of 11-point scales to the following
questions: (i) “Is [country] made a worse or a better
place to live by people coming to live here from
other countries?”; (ii) “Would you say that [coun-
try]’s cultural life is generally undermined or en-
riched by people coming to live here from other
countries?” and; (iii) “Would you say it is generally
bad or good for [country]’s economy that people
come to live here from other countries?”. Missing
data points for these time series were imputed using
last observation carried forward (LOCF) strategy,
which can be applied since the attitudes towards
immigration tends to be stable from one year to an-
other. Each survey was responded by at least 1500
people. The indicator of ethnic threat perception
has the role of representing attitudinal data in the
analysis, or in other words, identifying if the re-
ported bias is somehow a reflection of the ingroup
perceptions of these outgroups.

In addition, we use as indicators the number
of foreign population by nationality residing in

Spain5, the rate of the population receiving un-
employment social benefits (foreigners from the
EU excluding Spain and foreigners from outside
the EU)6 and committed offenses by background,
which can be countries from the EU excluding
Spain (British, Germans, Italians and Romanians),
America (Colombians and Ecuadorian), and Africa
(Moroccans)7. Such datasets are publicly available
and can be found in the INE database.

3.4 Word Embeddings Training and
Evaluation

Using the datasets filtered by year, we trained skip-
gram embedding models using the Fasttext imple-
mentation (Bojanowski et al., 2017). Since Spanish
is a morphologically rich language, this model is a
suitable choice as it takes into account the words’
morphological structure. Due to the difference in
the number of documents in the corpus across the
years, we adopt a grid search strategy to define the
optimal hyper-parameters of the models and favor
embedding quality (see yearly hyper-parameters
in Appendix). Only words that appeared at least
15 times in each yearly dataset were taken into ac-
count in the training phase. The resulting word
vectors were L2 normalized.

We evaluate our models using two Spanish word
similarity benchmarks, namely RG-65 (Camacho-
Collados et al., 2015) and MC-30 (Hassan and Mi-
halcea, 2009). The yearly models achieved an aver-
age of 0.72 and 0.70 Pearson correlation coefficient
values in the RG-65 and MC-30 benchmarks for
evaluating word similarity, respectively (variance
RG − 65 = 0.0003 and variance MC − 30 =
0.0011). The evaluation results by year are shown
in Appendix. In addition, we compute the aver-
age group vector for the ingroup and each of the
outgroup nationalities and observe that, although
some fluctuations can be observed for the German
and Spanish, the variance is not significant. There-
fore, our findings cannot be explained by the group
vector variance.

3.5 Word lists

Here, we describe the process for selecting words
that represent the crimes, drugs, poverty and pros-
titution concepts, as well as the ingroup and out-

5“Estadística del Padrón continuo. Población extranjera
por Nacionalidad, provincias, Sexo y Año”

6“Tasa de paro por nacionalidad y periodo”
7“Estadística de condenados: Adultos. Condenados según

número de delitos, nacionalidad y sexo”
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Figure 2: Average group vector variance.

groups. The word lists used for creating the vector
representations of the ingroup and the outgroups
were defined according to a simple rule: the nation-
ality in masculine singular and plural form (e.g.,
Español, Españoles). The total frequencies per year
for words that compose such lists are shown in the
Appendix.

In order to identify words that represent crimes,
drugs, poverty and prostitution categories, we start
by fitting the high-treat and low-status words used
by Kroon et al. in the aforementioned concepts8.
Then, using an embedding model trained with the
whole content of the corpus instead of the yearly
slices, for each of the words in the initial list we
retrieve the 20 most similar words in the vector
space. Afterwards, the lists increased in the step
described above were revised and updated again by
the authors, excluding words that fall out of the de-
sired concept category. We exclude feminine word
inflections to favor lower group vector variances
since the analyzed dataset is not very large. The
lists of words for used each category of concepts
are shown in the Appendix.

3.6 Panel Data

Due to the pooled structure of the data, i.e., yearly
bias score measurements for each of the out-
groups, we build a panel with N = 84 observa-
tions (12 years x 7 outgroups). The stationary
behaviour of the panel was verified by applying
the Levin–Lin–Chu test, which is equivalent to a
pooled unit root test. The non-stationary hypothe-
sis was rejected, meaning that the panel data series
altogether is unaffected by changes in time. This
same test was applied to test the panel data station-
ary behaviour in Kroon et al.. Additionally, we

8Excluding the words related to the police, terrorism and
lack of intelligence, which do not suit the purposes of this
work.

performed a careful analysis of the model residuals
to ensure that there were no correlation patterns.

3.7 Random Effects model

To investigate the dependent series, we impose
a Random Effects (RE) multilevel model for
panel data. A multilevel model is an extension
of a regression, in which data is structured in
groups and coefficients can vary by group (Gelman
and Hill, 2006). We consider the RE model an
appropriate choice for this analysis, as we have
pooled structured data and allows accounting for
both group effects and error correlation. The
following variables were used as predictors:
Year trend: the years from 2007 to 2018, treated
as a categorical variable.
N Residents: size of outgroup residing in Spain,
described in subsection 3.3.
Unemployment benefits: rate of population
receiving unemployment benefits, described in
subsection 3.3.
Perception: ingroup’s perception of the outgroups,
described in subsection 3.3.
Offenses number of offenses committed in the
Spanish territory, described in subsection 3.3.
Lower PPP : dummy variable that indicates if the
outgroups’ country of origin has a Lower PPP than
Spain. According to the Data World Bank9, the
countries with PPP lower than Spain for the period
of analysis are Colombia, Ecuador, Morocco,
and Romania (LowerPPP = 1). The countries
with higher PPP are Germany, Italy and United
Kingdom (LowerPPP = 0).

Analytical models should also be parsimonious,
as fitting models with many random effects quickly
multiplies the number of parameters to be esti-
mated, particularly since random slopes are gener-
ally given covariances as well as variances (Bell
et al., 2019; Matuschek et al., 2017). Hence, the
chosen aforementioned indicators are the ones that,
to the best of our knowledge, are most appropriated
(both regarding data availability and purpose) to
test our hypothesis.

4 Results and Discussion

In this section we discuss the findings and limi-
tations of the present research. We analyse the
dynamics of stereotypical associations comprised

9Series named “GDP per capita, PPP (current international
$)” available in the World Development Indicators series.
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in 12 years (2007-2018) of Spanish local news pub-
lished in the newspaper 20 Minutos, comprising
1,757,331 news items, by training and analyzing
yearly word embedding language models. Our ob-
jective is to quantify stereotypes in such items to-
wards the aforementioned outgroups, taking into
account a cultural dimension by studying seven
of the most prominent foreign outgroups living in
Spain considering the aforementioned period of
analysis. We explore the hypothesis that outgroups
coming from countries which have a Lower PPP
than the host country (Spain), have stronger stereo-
typical associations with concepts related to crimes,
drugs, poverty and prostitution, as a consequence of
representing a greater social threat to the ingroup.

The yearly average bias scores concerning con-
cepts related to crimes and drugs are depicted in
Figures 3 and 4. The trends in Figure 3 show that,
most of the outgroups are more strongly associ-
ated with the crimes concepts than the Spanish
ingroup. The Colombian and the Romanian are the
outgroups more strongly associated with crimes
concepts, while the German and the British are
the two outgroups less associated. In fact, for most
years, the bias score values are negative for the Ger-
man and the British outgroups. In contrast, for the
Colombian, Ecuadorian, Morrocan, and Romanian
outgroups, bias score values are always positive. A
similar pattern can be observed in Figure 4, in the
case of stereotypes concerning drugs.

The results of the Random effects model for the
aforementioned series are presented in Table 1, and
the main effects of the predictors are shown in the
Model 1. In accordance to our expectations, the
Lower PPP variable affects the bias significantly in
both series. The positive coefficients indicate that
the Colombian, the Ecuadorian, the Moroccan and
the Romanian outgroups have higher stereotypical
association with crimes and drugs concepts than the
German, the British and the Italian outgroups. The
year trend does have a significant effect, except for
years 2009 and 2011 for crimes series, and years
2010 and 2011 for the drugs series. The positive
coefficients indicate that the bias score for such
years was higher than for the basis year, 2007.

To further inspect the effects of the Lower PPP
variable, we add interaction terms in Model 2. For
both series, there is a strongly significant relation-
ship between Lower PPP and Unemployment bene-
fits, such that when the rate of population receiving
unemployment benefits increases, the stereotype

association for Colombian, Ecuadorian, Moroccan
and Romanian (LowerPPP = 1) also increases,
but decreases for German, British and Italian out-
groups. Similarly, the interaction with the number
of committed offenses in the drugs series reveals
that an increase in the offenses lead to stronger
stereotypical associations for the first outgroups,
but not for the latter. For the series concerning
crimes concepts, it is also possible to observe that
the public opinion threat perception decreases as
stereotypical associations increases.

The yearly average bias scores for concepts re-
lated to poverty and prostitution are depicted in Fig-
ures 5 and 6. For poverty related concepts, German,
Italian, and British bias score values are negative
for most years, meaning that poverty concepts are
actually more associated with the Spanish ingroup
when compared to such outgroups. The same is
not true for Colombian, Ecuadorian, Moroccan,
and Romanian outgroups. Again, in Figure 6 it is
possible to observe that same division between out-
groups. The descriptive analysis show that, overall,
outgroups in the Lower PPP classification exhibit
stronger association with concepts related to prosti-
tution and poverty.

The Table 2 shows the results of the Random
Effects model for the aforementioned bias series.
Consistently, for the two dependent series a strong
effect regarding the Lower PPP variable can be
observed meaning that again the British, the Ger-
man, and the Italian are appreciably less associated
with poverty and prostitution concepts than the
Colombian, the Ecuadorian, the Moroccan, and
the Romanian outgroups.

Concerning time effects, only the years 2009 and
2011 affect significantly the poverty series, while
the year trend is not significant for the prostitu-
tion stereotypical associations. Comparably to the
findings described for the crimes and drugs con-
cepts, the Unemployment benefits predictor has a
significant involvement with the dependent series,
indicating discrepancy between lower and higher
PPP groups. Aside from the interaction with the un-
employment benefits predictor, which has the same
pattern described above for the crimes and drugs se-
ries, no other predictor interacts significantly with
the Lower PPP group.

The strong effect of the Lower PPP predictor
on our analysis that news discourse emphasises
the ethnicity of certain outgroups more than others.
Furthermore, the interpretation of main effects and
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Figure 3: Average bias score for crimes concepts. Figure 4: Average bias score for drugs concepts.

Crimes Drugs
Predictors Model 1 Model 2 Model 1 Model 2
Year.2008 0.0297 (0.0150) 0.0508** (0.0164) -0.0047 (0.0219) -0.0166 (0.0211)
Year.2009 0.0408* (0.0197) 0.0881*** (0.0217) 0.0139 (0.0269) 0.0440 (0.0294)
Year.2010 0.0306 (0.0264) 0.0731* (0.0327) 0.0508** (0.0351) 0.1314** (0.0393)
Year.2011 0.0753** (0.0303) 0.1232** (0.0376) 0.0868* (0.0400) 0.1786*** (0.0453)
Year.2012 0.0406 (0.0347) 0.0958* (0.0366) 0.0636 (0.0424) 0.1641*** (0.0470)
Year.2013 0.0551 (0.0325) 0.1118** (0.0394) 0.0736 (0.0423) 0.1750*** (0.0466)
Year.2014 0.0378 (0.0316) 0.0904* (0.0366) 0.0577 (0.0392) 0.1516*** (0.0425)
Year.2015 0.0292 (0.0252) 0.0689* (0.0294) 0.0581 (0.0319) 0.1321*** (0.0339)
Year.2016 0.0054 (0.0247) 0.0340 (0.0296) 0.0224 (0.0340) 0.0865* (0.0374)
Year.2017 0.0185 (0223) 0.0393 (0.0268) 0.0364 (0.0288) 0.0883* (0.0305)
Year.2018 0.0068 (0.0249) 0.0162 (0.0321) 0.0259 (0.0344) 0.0902 (0.0405)
Lower PPP 0.1207*** (0.0102) 0.2263*** (0.0637) 0.1186*** (0.0131) 0.0508 (0.0827)
N Residents 3.428e-05 (1.796e-05) 2.281e-05 (2.121e-05) -3.799e-05 (2.239e-05) -6.058e-05 (2.559e-05)

Unemployment
benefits

-0.0013 (0.0012) -0.0054** (0.0018) -0.0009 (0.0015) -0.0077*** (0.0021)

Offenses 2.842e-06 (1.953e-06) 4.621e-06 (2.465e-06) 1.543e-06 (2.396e-06) -1.391e-06 (3.221e-06)
Perception -0.0004 (0.0002) -0.0002 (0.0003) -0.0002 (0.0003) 0.0007 (0.0004)

Unemployment x
Lower PPP

- 0.0023** (0.0008) - 0.0040*** (0.0010)

Offenses x
Lower PPP

- -1.821e-06 (1.672e-06) - 2.072e-06* (2.352e-06)

Perception x
Lower PPP

- -0.0007* (0.0003) - -0.0003 (0.0003)

N 84 84 84 84
Residual 0.000354 0.000292 0.000426 0.000342

R-squared 0.93 0.95 0.90 0.92

Table 1: Random Effects model predictions of bias scores for concepts related to crimes and drugs. *p < .05, **p
< .01, ***p < .001. Standard errors for each coefficient shown in parenthesis.

interactions with sociopolitical variables indicates
that stereotypical portrayals seem to be dissoci-
ated from real demographic trends. Discourse is
one of the everyday social practices that may be
used for discriminatory purposes, for instance in
intra-group discourse about resident minorities or
immigrants frame these “others” negatively, thus
leading to the reproduction of ethnic prejudices or
ideologies (Van Dijk, 2000). Our findings go in line
with frames described in other studies made with
European newspapers, which indicate the semantic
link between foreigners, prostitution, criminality
and degeneracy (Neyland, 2019; Stenvoll, 2002;
Light and Young, 2009; Igartua et al., 2005; Rancu,
2011), especially for Eastern European and Latin
American backgrounds. We join previous studies
pointing that media coverage can be stereotypi-
cal, associating ethnic outgroups with stigmatized
attributes, and therefore having serious negative
effects both on individuals and society, as news

are powerful sources of the discursive demoraliza-
tion of marginalised groups (Hamborg et al., 2018;
Zilber and Niven, 2000; Angermeyer and Schulze,
2001; Sui and Paul, 2017; Kroon et al., 2020; Farris
and Silber Mohamed, 2018; Milioni et al., 2015;
Abrajano et al., 2017; Saiz de Lobado García et al.,
2018; Neyland, 2019).

We cite the following limitations of our findings.
The present analysis considers only one data source,
therefore our conclusions cannot be generalized to
other Spanish media outlets. Although the unavail-
ability of other diachronic corpora for Spanish from
Spain limits our conclusion to a single news outlet,
we argue that this study is a valuable contribution
to stereotype analysis in media discourse using a
non-English target language.

Further, we acknowledge that by excluding gen-
der inflected words, stereotypes about women that
could be informative were left out. We do wish
to explore gender inflected words in future work
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Figure 5: Average bias score for poverty concepts. Figure 6: Average bias score for prostitution concepts.

Poverty Prostitution
Predictors Model 1 Model 2 Model 1 Model 2
Year.2008 0.0409 (0.0206) 0.0388* (0.0180) 0.0529 (0.0268) 0.0606* (0.0289)
Year.2009 0.0595** (0.0177) 0.0899*** (0.0202) 0.0397 (0.0387) 0.1230** (0.0377)
Year.2010 0.0429 (0.0253) 0.1036** (0.0328) 0.0350 (0.0446) 0.1720*** (0.0479)
Year.2011 0.0611* (0.0278) 0.1232** (0.0376) 0.1043 (0.0525) 0.2576*** (0.0550)
Year.2012 0.0270 (0.0316) 0.1027* (0.0389) 0.0487 (0.0551) 0.2184*** (0.0586)
Year.2013 0.0427 (0.0285) 0.1191** (0.0384) 0.0792 (0.0558) 0.2503*** (0.0597)
Year.2014 0.0302 (0.0270) 0.1008** (0.0352) 0.0736 (0.0563) 0.2305*** (0.0551)
Year.2015 -0.0033 (0.0229) 0.0516 (0.0291) 0.0425 (0.0507) 0.1627** (0.0504)
Year.2016 0.0197 (0.0219) 0.0656 (0.0296) -0.0726 (0.0414) 0.0239 (0.0428)
Year.2017 0.0095 (0.0197) 0.0460 (0.0256) 0.0166 (0.0355) 0.0920* (0.0355)
Year.2018 0.0023 (0.0230) 0.0440 (0.0311) -0.0233 (0.0380) 0.0565 (0.0445)
Lower PPP 0.0991*** (0.0108) 0.0821 (0.0767) 0.1399*** (0.0173) 0.1622 (0.1083)
N Residents -1.664e-05 (1.549e-05) -3.534e-05 (1.798e-05) 3.574e-05 (2.41e-05) -1.492e-05 (2.731e-05)

Unemployment
benefits

-0.0018 (0.0012) -0.0070*** (0.0018) -0.0007 (0.0021) -0.0125*** (0.0029)

Offenses 1.004e-06 (1.708e-06) 1.084e-07 (2.227e-06) 4.065e-06 (2.168e-06) 5.893e-06 (3.789e-06)
Perception -0.0003 (0.0002) 0.0003 (0.0003) -0.0005 (0.0003) 0.0004 (0.0005)

Unemployment x
Lower PPP

- 0.0031** (0.0009) - 0.0070*** (0.0013)

Offenses x
Lower PPP

- -1.806e-08 (2.227e-06) - -5.458e-06 (3.336e-06)

Perception x
Lower PPP

- -0.0002 (0.0003) - -0.0003 (0.0004)

N 84 84 84 84
Residual 0.000366 0.000334 0.00118 0.000769

R-squared 0.84 0.87 0.93 0.96

Table 2: Random Effects model predictions of bias scores for concepts related to poverty and prostitution. *p <
.05.**p < .01, ***p < .001. Standard errors for each coefficient shown in parenthesis.

with a more suitable dataset. Lastly, we would like
to point that all these nationalities have intricate
and deep political relationships with Spain which
certainly go beyond having a higher or lower GPD
per capita.

5 Conclusion

In this work we analyzed the dynamics of stereo-
typical associations concerning seven of the most
prominent ethnic outgroups living in Spain using
language models trained with 12 years of news
items from the Spanish newspaper 20 Minutos. We
investigated biases concerning concepts related to
crimes, drugs poverty and prostitution, exploring
the relation between the stereotypical associations
and the GPD per capita (PPP) of the outgroups’
countries of origin, public opinion, outgroup size,
unemployment subsidy, and number of committed

offenses in the Spanish territory.

Our results show that the texts exhibit stereo-
typical associations, especially for the Colombian,
Ecuadorian, Moroccan and Romanian outgroups.
We conclude that the examined news articles em-
phasize the nationality of certain ethnicities, which
hinder the integration process of already marginal-
ized outgroups. Moreover, these associations can
be further propagated and amplified through com-
putational algorithms if available data indiscrim-
inately (Bolukbasi et al., 2016b; Nadeem et al.,
2020), leading to concerning outcomes.

As future work, we aim to move to a multilin-
gual perspective and compare outgroup stereotypes
across different languages. Furthermore, we wish
to examine stereotypes in political discourse, to
inspect if patterns similar to the ones found in this
work can be observed.
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A Word lists

In the next subsections we specify the word lists
that were used to represent crimes, drugs, poverty
and prostitution concepts, as well as the ingroup
and outgroups. Please notice that some of the
words in the lists are plural inflections that have no
corresponding translation in English. We identify
such words by adding ’(plural)’ next to the singular
translation.

A.1 Ingroup and outgroups

Ingroup in Spanish: Español, Españoles’.
Ingroup translation: “Spanish”, “Spanish (plu-
ral)”.
British outgroup in Spanish: Británico, Británi-
cos.
British outgroup translation: “British”, “British
(plural)”.
Colombian outgroup in Spanish: Colombiano,
Colombianos.
Colombian outgroup translation: “Colombian”,
“Colombians”.
Ecuadorian outgroup in Spanish: Ecuatoriano,
Ecuatorianos.
Ecuadorian outgroup translation: “Ecuadorian”,
“Ecuadorians”.
German outgroup in Spanish: Alemán, Ale-
manes.
German outgroup translation: “German”, “Ger-
mans”.
Italian outgroup in Spanish: Italiano, Italianos.
Italian outgroup translation: “Italian”, “Ital-
ians”.
Moroccan outgroup in Spanish: Marroquí, Mar-
roquíes.
Moroccan outgroup translation: “Moroccan”,
“Moroccans”.
Romanian outgroup in Spanish: Rumano, Ru-
manos.
Romanian outgroup translation: “Romanian”,
“Romanians”.

A.2 Frequency of Ingroup and outgroup
words

The table 3 shows the frequencies by year of the
words that were used to create the ingroup and
outgroup vector representations in our study.

A.3 Crimes

Words in Spanish: Cabecilla, cabecillas, ar-
restado, arrestados, detenido, detenidos, sospecho,
sospechos, sospechoso, sospechosos, ilegal, ile-
gales, ilegalidad, clandestino, clandestinos, clan-
destinidad, narcotráfico, narcotraficante, narcotraf-
icantes, traficante, traficantes, contrabando, con-
trabandista, contrabandistas, aprehensión, aprehen-
siones, incautación, incautaciones, atraco, atracos,
atracador, atracadores, asalto, asaltos, asaltante,
asaltantes, crimen, criminalidad, criminal, crimi-
nales, delito, delitos, agresión, agresiones, delin-
cuencia, delincuente, delincuentes, malhechor, mal-
hechores, robo, robos, hurto,hurtos, sustracción,
sustracciones, mafia, mafias, mafioso, mafiosos, vi-
olación, violaciones, violador, violadores, pedófilo,
pedófilos, asesino, asesinos, asesinato,asesinatos,
homicidio, homicidios, homicida, homicidas, vio-
lencia, violento, violentos,maltrato, maltratos, mal-
tratador, maltratadores.

Translations: “faction leader”, “faction lead-
ers”, “arrested”, “arrested (plural)”,“detained”, “de-
tained (plural)”, “suspect”, “suspects”, “shady”,
“shady (plural)”, “illegal”, “illegal (plural)”, “il-
legality”, “clandestine”, “clandestine (plural)”,
“underground”, “drug trafficking”, “drug dealer”,
“drug traffickers”, “trafficker”, “traffickers”, “smug-
gling”, “smuggler”, “smugglers”, “apprehension”,
“apprehensions”, “seizure”, “seizures”, “robbery”,
“robberies”, “robber”, “robbers”, “assault”, “as-
saults”, “burglar”, “burglars”, “crime”, “criminal-
ity”, “criminal”, “criminals”, “felony”, “felonies”,
“aggression”, “aggressions”, “delinquency”, “delin-
quent”, “delinquents”, “malefactor”, “malefac-
tors”, “stealing”, “stealing (plural)”, “theft”, “theft
(plural)”, “thievery”, “thievery (plural)”, “mafia”,
“mafias”, “gangster”, “gangsters”, “rape”, “rapes”,
“rapist”, “rapists”, “pedophile”, “pedophiles”, “mur-
derer”, “murderers”, “murder”, “murders”, “homi-
cide”, “homicides”, “killer”, “killers”, “violence”,
“violent”, “violent (plural)”, “maltreatment”, “mal-
treatments”, “batterer”, “batterers”.
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Year British Colombian Ecuadorian German Italian Moroccan Romanian Spanish
2007 340 199 226 433 411 679 472 3094
2008 338 312 172 362 273 981 457 3335
2009 190 124 93 271 167 539 171 2095
2010 1208 400 207 1927 954 2476 627 21158
2011 1294 387 165 2286 1171 1681 613 23566
2012 1240 288 122 1761 890 1738 443 18141
2013 1618 346 130 2212 905 2119 561 21183
2014 1519 357 104 2194 1154 2381 449 22082
2015 1366 286 88 1767 1051 1802 381 19123
2016 1526 206 141 1701 899 1087 287 15450
2017 1307 196 83 1518 947 1061 255 13986
2018 545 114 40 907 499 529 163 7556

Table 3: Frequency of the words that compose the ingroup and outgroup representations in the corpus 20 Minutos
by year.

A.4 Drugs

Words in Spanish: Droga, drogas, adicción, adic-
ciones, adicto, adictos, drogadicción, drogadicto,
drogadictos, estupefaciente, estupefacientes, dro-
godependencia, drogodependencias, drogodependi-
ente, drogodependientes,alcohol, alcoholismo, bor-
racho, borrachos, heroína, cocaína, papelina, pa-
pelinas, bolsita, bolsitas, hachís, marihuana, sus-
tancia, sustancias, cannabis, metanfetamina, anfe-
tamina, speed, éxtasis, mdma.

Translations: “drug”, “drugs”, “addiction”, “ad-
dictions”, “addict”, “addicts”,“drug addiction”,
“drug addict”, “drug addicts”, “narcotic”, “nar-
cotics”, drug addiction, drug addiction, “junkie”,
“junkies”, “alcohol”, “alcoholism”, “drunk”, “drunk
(plural)”, “heroin”, “cocaine”, “ “drug pa-
per”11, “drug papers”, “drug bag”12, “drug bags”
“hashish”, “marijuana”, “substance”, “substances”,
“cannabis”, “methamphetamine”, “amphetamine”,
“speed”, “ecstasy”, “mdma”.

A.5 Poverty

Words in Spanish: miseria, miserable, miserables,
pobreza, pobre, pobres, empobrecimiento, em-
pobrecido, empobrecidos, mendicidad, mendigo,
mendigos, desfavorecido, desfavorecidos, nece-
sitado, necesitados, desesperación, desesperados,
desesperado, vulnerabilidad, vulnerables, vulner-
able, chabola, chabolas, chabolista, chabolistas,
infravivienda, infraviviendas, barriada, barriadas,
vagabundo, vagabundos, marginalidad, marginal,
marginales, marginación, marginado, marginados.

11Papelina is a piece of paper to hold small amounts of
drugs.

12Bolsita is a small plastic bag to hold small amounts of
drugs.

Translations: “misery”, “miserable”, “miser-
able (plural)”, “poverty”, “poor”, “poor (plural)”,
“impoverishment”, “impoverished”, “impoverished
(plural)”, “begging”, “beggar”, “beggars”, “dis-
advantaged”, “disadvantaged (plural)”, “people
in need”, “people in need (plural)”, “despera-
tion”, “desperate”, “desperate (plural)”, “vulnera-
bility”, “vulnerable”, “vulnerable (plural)”, “shanty
town”, “shanty town (plural)”, “person that lives
in shanty town”, “person that lives in shanty
town (plural)”, “slum”, “slums”, “poor neigh-
borhood”, “poor neighborhoods”, “vagabond”,
“vagabonds”, “marginality”, “marginal”, “marginal
(plural)”, “marginalization”, “marginalized (plu-
ral)”,“ marginalized (plural)”.

A.6 Prostitution

Words in Spanish: Prostitución, prostíbulo,
prostíbulos, prostituta, prostitutas, proxenetismo,
proxeneta, proxenetas.

Translations: “Prostitution”,“ brothel”, “broth-
els”, “prostitute”, “prostitutes”, “pimping”, “pimp”,
“pimps”.

B Word Embeddings

In the following subsections we show the hyper-
parameters used to train the word embedding mod-
els and the yearly scores of the RG − 65 and
MC − 30 semantic similarity benchmarks.

B.1 Hyper-parameters

All Fasttext skipgram models were trained with 250
dimensions, five epochs and minimum word fre-
quency of 15 occurrences. The hyper-parameters
selected by the grid-search are shown below in
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the Table. Default values were used for hyper-
parameters that are not mentioned here 13.

Year Window size N-grams Min/max
2007 7 1 4/6
2008 8 2 2/6
2009 8 4 3/6
2010 7 3 default (0/0)
2011 6 1 2/6
2012 5 1 default (0/0)
2013 5 3 default (0/0)
2014 8 1 default (0/0)
2015 5 4 default (0/0)
2016 4 4 3/6
2017 4 1 default (0/0)
2018 5 1 4/6

Table 4: Embedding training hyper-parameters.
Min/max means the minimum and maximum length of
char ngram.

RG-65
Pearson

coefficient

RG-65
p-value

MC-30
Pearson

coefficient

MC-30
p-value

2007 0.74 4.54e-08 0.67 2.99e-04
2008 0.75 2.51e-09 0.72 7.2e-04
2009 0.75 2.43e-07 0.78 9.56e-04
2010 0.70 5.66e-09 0.71 4.2e-04
2011 0.72 6.79e-09 0.66 1.6e-0.3
2012 0.70 7.75e-09 0.68 9.49e-04
2013 0.70 5.88-09 0.69 7.96e-04
2014 0.73 1.22e-09 0.71 4.35e-04
2015 0.71 3.35e-10 0.72 2.7e-04
2016 0.73 2.17e-09 0.69 7.76e-04
2017 0.73 5.16e-09 0.66 1.89e-03
2018 0.72 1.4e-08 0.72 5.27e-04

Table 5: Yearly semantic similarity evaluation results
for RG-65 and MC-30 benchmarks.

B.2 Semantic similarity evaluation
The Table 5 shows the Pearson coefficients and p-
values for the RG−65 and MC−30 Spanish word
similarity scores, for each of the yearly trained
embedding models.

13https://fasttext.cc/docs/en/options.html
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Abstract

Recent years have brought a tremendous
growth in assistive robots/prosthetics for peo-
ple with partial or complete loss of upper limb
control. These technologies aim to help the
users with various reaching and grasping tasks
in their daily lives such as picking up an ob-
ject and transporting it to a desired location;
and their utility critically depends on the ease
and effectiveness of communication between
the user and robot. One of the natural ways
of communicating with assistive technologies
is through verbal instructions. The meaning
of natural language commands depends on the
current configuration of the surrounding envi-
ronment and needs to be interpreted in this
multi-modal context, as accurate interpretation
of the command is essential for a successful
execution of the user’s intent by an assistive
device. The research presented in this paper
demonstrates how large-scale situated natural
language datasets can support the development
of robust assistive technologies. We lever-
aged a navigational dataset comprising > 25k
human-provided natural language commands
covering diverse situations. We demonstrated
a way to extend the dataset in a task-informed
way and use it to develop multi-modal intent
classifiers for pick and place tasks. Our best
classifier reached > 98% accuracy in a 16-way
multi-modal intent classification task, suggest-
ing high robustness and flexibility.

1 Introduction

Paralysis is a loss of motor function to varying de-
grees of severity often resulting in severely reduced
or complete loss of upper and/or lower limb control.
Such impairments reduce the quality of life for mil-
lions of people affected by paralysis (Armour et al.,
2016) and increase their dependence upon others
to perform day-to-day activities including self- or

0Work done while at Melbourne University.
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Figure 1: High-level overview of our intent classifier.
The system receives visual information extracted from
the environment together with a natural language task
command as input; and uses this to predicts the intent
as a suitable sequence of actions necessary to execute
the command. Visual scene parsing and cross-modal
entity linking are not tackled in this work.

object locomotion and object manipulation tasks
like reaching, picking up an object and moving it
to a desired location (pick and place). Assistive de-
vices can compensate for some of the impairments
provided that they can accurately infer and exe-
cute user intents. Most assistive devices currently
in use rely on manual control (e.g., wheelchairs
controlled with joysticks), and cannot understand
natural language user commands or map them to
potentially complex sequences of actions. More-
over, they do not perceptively account for the sur-
rounding environment they are interacting with and
as a consequence require a more detailed user input.
Therefore, recent developments have focused on
Intelligent Assistive Devices (IAD), that combine
traditional assistive devices with advanced sensors
and artificial intelligence, aiming for an accurate
inference of a user’s intent in the context of a multi-
modal representation of the environment (Barry
et al., 1994).

The utility of the IAD depends critically on the
efficiency and effectiveness of the communication
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with the user. One of the natural ways of instructing
the IAD is through verbal communication. It is
important to recognize that a majority of patients
suffering a loss of limb control retain the ability to
speak, albeit impaired in some cases. Modern voice
controlled IADs such as wheelchairs (Hou et al.,
2020; Umchid et al., 2018), smart home appliances
and assistive anthropomorphic robots (Pulikottil
et al., 2018a; John et al., 2020) are still limited to
a pre-defined set of instructions that the user can
choose from. This requires the user to explicitly
dictate each individual action leading to the final
goal rather than just stating the desired goal alone
and off-loading the decision making to perform
any required sequence of actions to accomplish the
user’s intent. Consider the example in Figure 1,
where a robotic assistant situated in a complex and
dynamic environment is given a verbal instruction
“Pick up the book”. While the need of a “pick”
action is evident from the language command alone,
possible additional actions (navigate to the book’s
location, or to turn around to face the book) depend
on the agent and book’s location, thus requiring an
interpretation of the natural language command in
the context of the surrounding environment.

In this paper, we present a step towards bridg-
ing this gap by drawing on large, data resources,
state of the art language understanding and intent
classification methods. We develop a classifier that
takes a higher-order task command contextualized
in the current environment as input and derives the
necessary set of sub-actions (intents) required to
achieve the goal intended by the user. We present a
scalable framework to develop such flexible natu-
ral language interfaces for IAD that execute ‘pick
and place’ tasks. Specifically, we leverage AL-
FRED (Shridhar et al., 2020), a large-scale natu-
ralistic data set for developing indoor navigation
systems, comprising diverse, crowd-sourced natu-
ral language commands and photo-realistic images,
and adapt it to the pick-and-place task (Section 3).
We augment the state-of-the-art natural language
intent classifier DIET (Bunk et al., 2020) with a vi-
sual processing component (Section 4). Evaluation
against simpler classifiers as well as exclusively
text-based classification scenarios shows the ad-
vantage of joint processing of visual and language
information, as well as the DIET architecture. The
use of large-scale naturalistic data allows to build
solutions that generalize beyond the confines of a
laboratory, are easily adaptable and have the po-

tential to improve the overall quality of life for the
user. This framework is part of a larger project
intended to develop a multi-modal (voice and brain
signal) prosthetic limb control.

In short, our contributions are:

• We show that task-related large-scale data sets
can effectively support the development as-
sistive technology. We augmented the AL-
FRED data set with anticipated scenarios of
human-assistive agent interaction, including
noisy and partially observed scenarios.

• We contribute a multi-modal extension of a
state-of-the-art natural language intent classi-
fier (DIET) with a visual component, which
lead to the overall best classification results.

• Our best performing model achieved 98% ac-
curacy in a 16-way classification task over
diverse user-generated commands, evidenc-
ing that our architecture supports flexible and
reliable intent classification.

2 Related Work

Our work is cross-disciplinary, covering both med-
ical robotics and (multi-modal) machine learning
and NLP for intent classification.

Intent classification is the task of mapping a nat-
ural language input to a set of actions that when ex-
ecuted help achieve the underlying goals of the user.
As an essential component of conversational sys-
tems, it has attracted much attention in the natural
language understanding community with methods
ranging from semantic parsing (Chen and Mooney,
2011) to more recent deep learning (Liu and Lane,
2016; Goo et al., 2018) and transfer learning ap-
proaches, with unsupervised pre-training (Liu et al.,
2019; Henderson et al., 2020). The on-line interac-
tive nature of dialogue applications makes model
efficiency a central objective. We build on the re-
cent DIET classifier (Dual Intent and Entity Trans-
former; (Bunk et al., 2020)) which achieves com-
petitive performance in intent classification, while
maintaining a lightweight architecture without the
need for a large pre-trained language models. DIET
was originally developed for language-based dia-
logue, and we extend the system with a vision un-
derstanding component and show that it generalizes
to a multi-modal task setup.
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Visually grounded language understanding
addresses the analysis of verbal commands in the
context of the visual environment. Prior work
ranges from schematic representations of the en-
vironment avoiding the need for image analy-
sis (Chen and Mooney, 2011) over simplistic visual
environments (”block worlds” Bisk et al. (2016))
to complex outdoor navigation (Chen et al., 2019)).
The advance of deep learning methods for joint
visual and textual processing has lead to the de-
velopment of large-scale datasets which feature
both naturalisitic language as well as images (Bunk
et al., 2020; Chen et al., 2019; Puig et al., 2018).
We leverage a subset of the ALFRED dataset (Bunk
et al., 2020) which is a benchmark dataset for learn-
ing a mapping from natural language instructions
and egocentric (first person) vision to sequences of
actions for performing household tasks. The com-
mands in the ALFRED dataset are crowd-sourced
from humans, and as such are diverse and resem-
ble naturalistic language. The visual scenes are
complex and photo-realistic, and the dataset con-
tains tasks requiring the agent to execute com-
plex sequences of multiple, context-dependent ac-
tions to manipulate objects in an environment that
closely resembles the medical application scenario
addressed in this paper. We note that we do not ad-
dress the object recognition challenge in this work,
but assume access to the object locations, and train
intent classifiers to incorporate such information.

Interfacing medical assistive technologies Tra-
ditional interfaces to assistive technologies in-
volved manipulating joysticks (House et al., 2009),
or verbal commands which are restricted to simple
templates. The latter include very simple templates
(”up”, ”down”, ”left”; Pulikottil et al. (2018b)),
or highly constrained training data sets based on
command templates produced by five human an-
notators (Stepputtis et al., 2020). In this paper, we
leverage natural commands produced by thousands
of crowd workers with the aim to produce a robust
intent classifier amenable to natural speech input.

3 Data

We leveraged and extended the ALFRED (Action
Learning From Realistic Environments and Direc-
tives) dataset of visually grounded language com-
mands (Shridhar et al., 2020), for training and test-
ing our intent classifier. ALFRED consists of more
than 8,000 sets of scenes with unique environmen-
tal layout with a fixed set of associated movable

and static objects. Each scene is paired with an
indoor navigation task, and contains three levels
of information: (1) positional information of the
agent and objects, (2) natural language descriptions
of the high-level task and low-level instructions to
achieve the goal, and (3) a sequence of discrete
actions to be performed by the agent to achieve the
goal. An example is shown in Figure 2.

The visual task information comprises the posi-
tional (x, y, z) co-ordinates of the agent (Agent
Information), and the positional information of
static and interactable objects in the environment
(Scene Information). The natural language anno-
tation includes a “high-level task” describing the
overall goal, as well as detailed low-level instruc-
tions (“low-level subtasks”) on how to achieve the
goal. Low level instructions were provided by at
least three human annotators through crowdsourc-
ing. Finally, each ALFRED task in the train and
validation set is augmented with an ”action plan”
listing the sequence of actions (or intents) such as
GoToLocation or PickUpObject required to
achieve the goal in the context of the scene config-
uration (Figure 2, bottom). Crowd workers were
prompted by these action plans, so that a gold-
standard utterance-intent alignment could be de-
rived from the data set.

3.1 ALFRED for intent classification

We utilized a subset of the dataset corresponding
to “pick and place” tasks, which is most relevant
to our target application of humanoid arm control.
We refer to the item that is to be picked up as
“target object” and the item on which the picked-up
object is to be placed as the “receptacle object”.
ALFRED contains around 3,000 different pick and
place tasks, involving 58 unique target objects and
26 receptacle objects across 120 indoor scenes.

Leveraging the ALFRED action plans, we
could map all “pick and place” language com-
mands to a combination of three unique sub-
actions: GoToLocation1, PickUpObject
and PutObject. GoToLocation actions re-
ferred to actions of the agent moving to a given
location. PickUpObject and PutObject cor-
responded to the action of picking up the target
object and placing the target object, respectively.
Note that a single natural language directive can
cover one or more atomic actions. We refer to com-

1in analogy to a lateral or vertical movement of the robotic
arm
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Agent Information Agent {x: -2.50, y: 0.92, z: 2.50, rotation=0}

Scene Information

FloorPlan: FloorPlan214
Plate, {x: -0.31, y: 0.27, z: 5.99}
WateringCan, {x: -2.28, y: 0.45, z: 4.27}
KeyChain, {x: -4.31, y: 0.45, z: 6.73}
Box, {x: -2.40, y: 0.57, z: 4.57}
Laptop, {x: -2.49, y: 0.53, z: 0.79}
Vase, {x: -0.60, y: 1.46, z: 5.74}
WateringCan, {x: -2.40, y: 0.44, z: 3.83}

Language Information

High Level Task “Move the purple pillow from the couch to the black chair.”
Low Level Subtask 1 “Turn right and walk up to the couch.”
Low Level Subtask 2 “Pick up the purple pillow off of the couch.”
Low Level Subtask 3 “Turn around and walk across the room, then hand a left

and walk over to the black chair.”
Low Level Subtask 4 “Put the purple pillow on the black chair.”

Action Plan

Discrete Action 1 GoToLocation
Discrete Action 2 PickUpObject
Discrete Action 3 GoToLocation
Discrete Action 4 PutObject

Figure 2: Visual and Language information corresponding to a pick and place task in ALFRED, as well as the
associated Action Plan, i.e., sequence of actions (or intents), as provided in the the data set.

mands describing a single task as “single intent”
(“Pick up the keys.”), and commands describing
multiple tasks as “multi-intent” (“Bring the keys
from the chair to the table.””). Table 1 illustrates
the range of tasks and intents supported by the
original ALFRED dataset and resulting training in-
stances. In the original ALFRED data set, each
low-level instruction was associated with a single
intent (Table 1 middle).

We augmented high-level task descriptions with
intents by concatenating the actions of its associ-
ated low-level tasks (Table1 top). In addition, we
augmented the ALFRED tasks with additional di-
verse and relevant scenarios to our assistive agent
use case. First, we created partial tasks where the
agent was required to execute only parts of the
complete pick and place action sequence (e.g., only
move to, and pick up the object). We synthesized
these instances by concatenating all possible or-
dered subsequences of the low- level sub-tasks for a
scenario and concatenating their corresponding nat-
ural language commands. The resulting instances
were then treated as a single “multi-intent” direc-
tive (Table 1, bottom). Second, we randomized the
positions of the target and receptacle objects men-
tioned in the verbal commands to (1) far from the
agent, (2) near the agent or (3) near the receptacle.

Finally, we imposed physical constraints onto
the agent, resembling the characteristics of an as-
sistive robotic arm. In the original ALFRED, all
objects within a specific distance of the agent are

considered ‘pickable’. We introduced a thresh-
old (60 degrees) beyond which an object is un-
reachable and requires the agent to turn to the ob-
ject first. We introduced a corresponding new ac-
tion called RotateAgent that needed to be per-
formed before the PickUpObject. In addition,
we reduced the maximum reach distance of the
agent to 0.5 meters and updated ALFRED tasks
accordingly with GoToLocation actions before
PickUpObject where necessary. The resulting
dataset more realistically represented the physi-
cal constraints faced by real world entities, and
the actions to be taken to meet the necessary pre-
conditions to perform a task. We also handled cases
where visual features corresponding to a language
command were missing or irrelevant. For example,
the command “Take a step forward”, has a sin-
gle intent GoToLocation when considering the
natural language command alone. For such com-
mands, we generated multiple data instances with
randomized visual features to encourage the model
to be insensitive to an irrelevant input modality.

We divided our final dataset into non-
overlapping training, testing and validation sets
with no overlap in environments. We treated each
unique action combination observed in the data as
a distinct intent, leading to a total of 16 possible in-
tents that could be selected in response to a spoken
command.2 Table 2 summarizes our data set, full

2In addition to the 9 unique intents in Table 1, these
are {PickUpObject, PutObject}, {RotateAgent,
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Intent type Command Intent

H
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e
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nt

1. ”Move a red pillow from the couch to a black chair.”

{GoToLocation,
PickUpObject,
GoToLocation,
PutObject }

L
ow

-le
ve

ls
in

gl
e

in
te

nt

2. ”Turn right and walk up to the couch.” {GoToLocation }
3. ”Pick up the red pillow off the couch.” {PickUpObject }
4. ”Turn around and walk. . . to the chair.” {GoToLocation }
5. ”Put the red pillow on the chair.” {PutObject }

L
ow

-le
ve

lm
ul

ti
in

te
nt

6.
”Turn right and walk up to the couch. Pick up the
red pillow off the couch.”

{GoToLocation,
PickUpObject }

7.
”Pick up the red pillow off the couch. Turn around
and walk . . . to the chair.”

{PickUpObject,
GoToLocation }

8.
”Turn around and walk . . . to the chair. Put the red
pillow on the chair.”

{GoToLocation,
PutObject }

9.
”Turn right and walk up to the couch. Pick up the
red pillow off the couch. Turn around and walk . . .
to the chair.”

{GoToLocation,
PickUpObject,
GoToLocation }

10.
”Pick up the red pillow off the couch. Turn around
and walk . . . to the chair. Put the red pillow on the
chair.”

{PickUpObject,
GoToLocation,
PutObject }

11.
”Turn right and walk up to the couch. Pick up the
red pillow off the couch. Turn around and walk . . .
to the chair. Put the red pillow on the chair.”

{GoToLocation,
PickUpObject,
GoToLocation,
PutObject }

Table 1: Example high level multi-intent (1.), low-level single-intent (2.–5.) and low-level multi-intent (6.–7.)
tasks of type ‘pick and place’. The model receives language commands (left col) together with relevant visual
information, and predicts an intent (right col). Top/middle are from the original ALFRED dataset. Bottom instances
from data augmentation.
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train valid test

# Commands 104,669 24,612 25,109
Percentage 70% 15% 15%

Table 2: Final data set statistics.

data set statistics are in Table 5 in the appendix.

4 Models

Our intent classification model took vector repre-
sentations of the language command and visual
context as input and predicted the underlying in-
tent as one of 16 classes. We briefly describe the
representation schemes for scene and language in-
put. Afterwards, we present our proposed model,
which extended a state-of-the-art language intent
classifier to handle both visual and language input.

4.1 Visual Features

The visual data corresponding to a task instance
in ALFRED dataset included the agent and object
position information (Figure 2, Agent and Scene
information). We represented the visual informa-
tion of each task as a 4-dimensional vector with
elements corresponding to (i) The L2 (Euclidean)
distance between agent and target object, (ii) L2 dis-
tance between agent and receptacle object, (iii) L2
distance between target and receptacle object and
(iv) the angle between the target object and the
direction the agent is facing initially.

4.2 Language Features

We transformed the language command to pre-
trained word embeddings (Pennington et al., 2014;
Kenton and Toutanova, 2019; Peters et al., 2018).
Specifically, we use Tok2Vec embeddings provided
by SpaCy.3 We mapped each word in an input com-
mand to its corresponding embedding and obtained
a representation for the entire command by averag-
ing the word embeddings. Following (Bunk et al.,
2020) we augment the embeddings with word- and
character-level n-grams.

PickUpObject}, {RotateAgent,PutObject},
{GoToLocation, PickUpObject, PutObject},
{RotateAgent, PickUpObject, PutObject},
{RotateAgent, PickUpObject, GoToLocation},
{RotateAgent, PickUpObject, GoToLocation,
PutObject}

3https://spacy.io/usage/
embeddings-transformers

4.3 The DIET Intent Classifier
DIET is a state of the art, natural language intent
classification architecture developed for dialogue
understanding tasks (Bunk et al., 2020). DIET
classifiers are attractive for application to assistive
technologies because they can be trained rapidly
and work well even with small datasets. The DIET
classifier represents natural language inputs as de-
scribed above (Sec 4.2). This input representation
is passed through a neural network transformer ar-
chitecture (Vaswani et al., 2017) which is a state-of-
the-art architecture for computing contextualized
representations of input sequences. DIET is opti-
mized to maximize the similarity between the final
representation of the verbal command and an em-
bedded representation of the true intent. We follow
their optimization procedure, and at test time we
predicted the intent with the closest predicted em-
bedding to the gold label. We used the official
implementation, with default parameters.4

4.4 Multi-modal DIET
We extended the DIET classifier to a multi-modal
model (DIET-M) which predicted intents based on
language and scene features. The language input
was encoded exactly as in the original model. We
then concatenated the output of the transformer
along with the 4-dimensional numerical visual fea-
tures and passed the result first through a 10%
dropout layer, followed by two feed-forward layers
of sizes 256 and 128 and finally through an output
layer of size 40 to obtain a combined visual and
language representation. ReLU was used as the
activation function for all the feed-forward layers.
This joint embedded representation was then used
to identify the intents following DIET’s original
training objective, as described above.

5 Experiments

We present a series of experiments which assesses
the impact of model complexity, multi-modal infor-
mation as well as our data augmentation on final
intent classification performance. This work fo-
cuses on robust multi-modal intent classification,
and as such our experiments assume that the en-
tity recognition and visual interpretation (such as
object detection and location) have been solved ex-
ternally. We discuss our contribution in the context
of an end-to-end application Section 6.

4https://rasa.com/docs/rasa/reference/
rasa/nlu/classifiers/diet_classifier/
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5.1 Baselines
We compare DIET and DIET-M against a Multi-
Layer Perceptron (MLP) with a single hidden layer.
Two variations of the MLP were tested: (1) MLP
which takes as input only the embedded language
representations; and (2) MLP-M which is provided
with the embedded language representations con-
catenated with the visual features, resulting in a
multi-modal variant. Rectified linear unit (ReLU)
was used as the activation function and stochastic
gradient descent (Ruder, 2016) was used to mini-
mize a cross-entropy loss. The output of the final
layer was passed through a soft-max layer to get the
probability distribution across all possible intents.
At test time, the intent with the highest probability
score was predicted as the true intent associated
with a command.

We also report a simple majority class baseline,
which labels all instances with the most prevalent
class in the training set (GoToLocation).

5.2 Metrics
We report micro-averaged accuracy, acknowledg-
ing the class imbalance in our data set, as well as
precision recall and F1 measure.

5.3 Results
Our experiments answered the following questions:
(a) how important is the multi-modal (scene) input
for accurate intent classification; (b) is a power-
ful contextual language encoding model necessary
to achieve high intent classification performance;
and (c) how does the training dataset augmenta-
tion impact performance with multi-intent com-
mands? To answer the first question, we compared
both machine learning models (DIET-M, MLP-
M) against their unimodal language-only versions
(DIET, MLP). To answer the second question, we
compared the complex DIET classifier against the
simpler MLP architecture, and a majority class
baseline. Finally, the benefits of data augmentation
were ascertained by testing DIET-M’s performance
on the same testing dataset after training on datasets
with different levels of augmentation.

Powerful language encoders improve intent
classification accuracy. Table 3 compares the
performance of the majority class baseline (Ma-
jority), MLP and the DIET classifier. All models
were trained and tested on the full, augmented data
set. Unsurprisingly, we observed that all machine
learning models outperformed the majority class

Method Ac Pr Re F1

Majority 0.142 0.142 1.0 0.248

MLP 0.451 0.379 0.374 0.333
DIET 0.591 0.409 0.508 0.429

MLP-M 0.929 0.931 0.929 0.930
DIET-M 0.985 0.982 0.984 0.983

Table 3: Intent classification performance of the ma-
jority class baseline, multi-layer perceptron (MLP) and
our DIET classifier in a unimodal and multi-modal
setup (-M). We report accuracy (Ac), precision (Pr), re-
call (Re) and F1-measure.

baseline. Furthermore, the variants of the DIET
classifier consistently achieved a higher score than
the simpler MLP (improvement of 5.6% absolute
accuracy). Even though both models achieve F1
measures > 90%, very high language understand-
ing performance is essential for user satisfaction
in dialogue systems in general, and in assistive
technology settings in particular. In addition, our
evaluation adopted “laboratory” conditions, assum-
ing noise-free entity and vision processing. With
these arguments in mind, and recalling the fact
that DIET is by design fast and efficient, we con-
clude that state-of-the-art language understanding
architectures are preferable for situated intent clas-
sification.

Grounding language in visual context informa-
tion improved intent classification performance.
Table 3 compares multi-modal model variants
(DIET-M, MLP-M) – with access to visual and
language information – against their unimodal vari-
ants, which classify intents based on language com-
mands only and remain agnostic about the visual
surroundings. For both the MLP and DIET we
observed a substantial improvement with added vi-
sual information. This is unsurprising, given the
fact that navigational language commands are of-
ten high-level and can only be fully disambiguated
in the context of the environment. As evidenced
by the large performance gain of our multi-modal
models over their language-only counterparts, both
systems successfully learned to leverage the addi-
tional visual context for accurate intent interpreta-
tion.

Data augmentation improved performance of
DIET-M. We investigated the benefit of data aug-
mentation on the best performing classifier (DIET-
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Augmented Ac Pr Re F1

0% 0.630 0.529 0.607 0.545
10% 0.921 0.927 0.923 0.925
50% 0.952 0.947 0.944 0.945
100% 0.985 0.982 0.984 0.983
100% (multi) 0.981 0.974 0.976 0.973

Table 4: The performance of the DIET-M classifiers,
trained on datasets with access to 0%, 10%, 50% or
100% of the augmented data. 100% (multi) tests only
on the more challenging multi-intent subset of the test
data.

M) by ablating the amount of augmented train-
ing data available to the classifier during train-
ing. Specifically, we augment 0%, 10%, 50%
or 100% of the original ALFRED instances with
multi-subtask variations (as described in Section 3)
Rows 1-–4 in Table 4 show DIET-M performance
trained on data sets with varying amounts of aug-
mentation, and tested on the full, augmented test
data. The model improved consistently with in-
creased augmentation of the training data. Even
a small amount of augmented data improved per-
formance substantially, while more augmentation
leads to diminishing returns. We finally analyzed
specifically the benefit of data augmentation on un-
derstanding multi-intent commands, i.e., language
commands which imply sequences of actions (bot-
tom part of Table 1). To this end, we evaluated
the classifier only on multi-intent commands. The
result in the final row of Table 4 shows that the
performance on these longer and more complex
instances was practically on par with performance
on the full test set, confirming that DIET-M suc-
cessfully maps abstract comments to sequences of
actions.

6 Discussion

We leveraged and extended a large-scale dataset of
indoor navigation tasks to develop an intent clas-
sification component for robotic arm control to
perform ”pick and place” tasks. Our novel multi-
modal DIET classifier exceeded 98% in classifica-
tion performance in an ”in vitro” evaluation setup.
We now discuss limitations of our work as well as
future directions.

Toward end-to-end task completion. The in-
tent classifier will be embedded in a larger sys-
tem in order to enable end-to-end task completion.

In our evaluation, we assumed that visual scene
parsing (including object recognition and location)
as well as entity recognition in the language had
been solved perfectly and externally. In an ongo-
ing project, the presented system is integrated with
these components, leveraging the recent improve-
ments and corresponding tools and frameworks
powered by advances in machine learning, robotics
and data sets (Liu et al., 2020; Zhu et al., 2020;
Redmon and Farhadi, 2018). This paper presented
a highly accurate system which provides a strong
foundation and promising starting point for end-
to-end integration as well as experiments under
noisy conditions (e.g., malformed or ambiguous
utterances, or speech recognition errors).

Diversity of tasks and inputs Our study was
constrained to “pick-and-place” tasks which (a) are
conceptually straightforward and (b) are typically
expressed in a fairly regular, formulaic manner.
Even though the underlying ALFRED data set was
diverse and somewhat noisy due to its crowd-
sourced nature, future work will extend our sce-
nario to more complex tasks. ALFRED includes a
variety of tasks beyond “pick-and-place” and can
directly support this line of work. Our way of
constructing multi-intent subtasks by concatenat-
ing low-level descriptions biased the data towards
long descriptions and an underrepresentations of
co-referential pronouns (e.g., “Pick up the keys and
put them in the bowl”). Future work could leverage
a mix of human data collection and natural lan-
guage generation from language models to further
augment the training data.

The accuracy-flexibility trade-off. This work
developed a highly accurate intent classifier moti-
vated by the fact that efficient and reliable language
understanding is paramount to effective human-
robot interaction. To achieve this, we limited the
scenarios to a single task type as well as a sim-
ple but inflexible intent classification task: We
exhaustively enumerated possible intents as 16
classes, thus preventing the model from meaning-
fully classifying an input that does not correspond
to one of these categories. A more flexible system
would predict a sequence of atomic intent labels of
varying length. To this end, the task could be re-
framed as multi-label classification; or a sequence-
to-sequence model could be developed to translate
a natural language input into a sequence of intent
labels. Analyzing the trade-off between reliability
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and flexibility in the context of robust multi-modal
intent classification for assistive technologies is a
fruitful direction for future research.

7 Conclusion

This paper presented a multi-modal intent classifier
for ”pick-and-place”-tasks which takes diverse nat-
ural language commands as input, and which will
be incorporated into a natural language interface
of an assistive robotic arm. Our work will help to
improve the naturalness of human-robot commu-
nication, which to-date often consists of mechan-
ical (joystick) control or formulaic and templated
language input. We showed how a large-scale natu-
ralistic data set for general indoor navigation can
be adapted to support training of a specific, high-
accuracy intent classifier. We extended a state-of-
the-art natural language-based intent classifier to
utilize both vision and language information. Our
evaluation showed the effectiveness of our data
augmentation, and the importance of multi-modal
signal for our task. We hope that our work moti-
vates a wider, cross-disciplinary use of large-scale
naturalistic data sets – which are becoming more
ubiquitous in the NLP and ML communities – as a
valuable resource for developing flexible intelligent
assistive technologies.
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A Dataset Statistics

Intent train valid test

{ GoToLocation } 14.3% 14.3% 14.3%
{ PickUpObject } 3.5% 3.7% 3.5%
{ PutObject } 3.5% 3.6% 3.5%

{ GoToLocation, PickUpObject } 7.2% 7.1% 7.2%
{ PickUpObject, GoToLocation } 3.5% 3.6% 3.6%
{ GoToLocation, PutObject } 7.1% 7.1% 7.1%
{ PickUpObject, PutObject } 3.5% 3.6% 3.6%
{ RotateAgent, PickUpObject } 3.6% 3.4% 3.7%
{ RotateAgent, PutObject } 3.6% 3.5% 3.6%

{ GoToLocation, PickUpObject, GoToLocation } 7.1% 7.1% 7.1%
{ PickUpObject, GoToLocation, PutObject } 7.0% 6.9% 7.2%
{ GoToLocation, PickUpObject, PutObject } 7.3% 7.1% 7.2%
{ RotateAgent, PickUpObject, PutObject } 3.6% 3.5% 3.5%
{ RotateAgent, PickUpObject, GoToLocation } 3.6% 3.6% 3.6%

{ GoToLocation, PickUpObject, GoToLocation,
PutObject }

14.2% 14.3% 14.2%

{ RotateAgent, PickUpObject, GoToLocation,
PutObject }

7.2% 7.4% 7.0%

Total Commands 104,669 24,612 25,109
Total Percentage 70% 15% 15%

Table 5: Full distribution of task instances by intent type in our final data set.
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Abstract

The detection of hyperbole is an important
stepping stone to understanding the intentions
of a hyperbolic utterance. We propose a model
that combines pre-trained language models
with privileged information for the task of hy-
perbole detection. We also introduce a suite of
behavioural tests to probe the capabilities of
hyperbole detection models across a range of
hyperbole types. Our experiments show that
our model improves upon baseline models on
an existing hyperbole detection dataset. Prob-
ing experiments combined with analysis using
local linear approximations (LIME) show that
our model excels at detecting one particular
type of hyperbole. Further, we discover that
our experiments highlight annotation artifacts
introduced through the process of literal para-
phrasing of hyperbole. These annotation arti-
facts are likely to be a roadblock to further im-
provements in hyperbole detection.

1 Introduction

The analysis of figurative language by Natural Lan-
guage Processing (NLP) systems is a challenge con-
fronting researchers and practitioners (Reyes and
Rosso, 2014; Rai and Chakraverty, 2020). Hyper-
bole is a common type of figurative language that
is defined by an intentionally excessive contrast be-
tween utterance meaning and reality along a seman-
tic scale to convey an evaluation (e.g., ‘my bedroom
is the size of a postage stamp’) (McCarthy and
Carter, 2004; Mora, 2009; Claridge, 2010; Carston
and Wearing, 2015; Burgers et al., 2016). The de-
tection of hyperbole has proven to be a challenging
problem for NLP systems, much like the detec-
tion of other figures of speech (Troiano et al., 2018;
Kong et al., 2020; Abulaish et al., 2020). The evalu-
ative nature of hyperbole motivates the importance
of understanding hyperbole for affective computing
applications (e.g., sentiment analysis).

Learning under Privileged Information (LUPI)
is a learning paradigm that involves providing ad-
ditional information during training to help teach
a model to learn a particular phenomenon (Pechy-
ony and Vapnik, 2010). The source and type of
privileged information (PI) varies depending on ap-
plication, such as a list of ingredients present in
an image to help teach a computer vision model
to detect food in images (Meng et al., 2019), or
the human ratings of various aesthetic categories
of images for automated assessment of aesthetic
photo quality (Shu et al., 2020). We propose to
use literal paraphrases of hyperbole as a source of
PI for hyperbole detection. We hypothesise that
this information will help a model to learn the ex-
cessive contrast within a particular hyperbole (e.g.,
‘my head is exploding right now’ → ‘my head is
hurting right now’).

Our contributions in this paper are as follows; (1)
We propose a method for hyperbole detection based
on the injection of PI; (2) We introduce Hyper-
Probe, a suite of behavioural tests for hyperbole
detection models; (3) We reveal that annotation
artifacts are a potential roadblock for progress on
hyperbole detection.

2 HYPO

The HYPO dataset is an annotated collection of
hyperbole introduced by Troiano et al. (2018). The
dataset consists of manually composed hyperbole
and hyperbole sourced from various online sources
including click-bait headlines, love letters, adver-
tisements, and animated cartoons.

Annotation for HYPO was carried out by crowd
workers who were given several tasks based on
each example. The crowd workers had to assess
whether they thought the utterance contained hy-
perbolic content. A follow up task was to highlight
the specific words in the utterance they considered
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Hyperbole Corpus Paraphrase Corpus Minimal Units Corpus
The principal is unhappy...we’re
cooked.

The principal is unhappy...we’re in
trouble.

Well cooked vegetables can be pureed
easily.

Her morning jog turned into a
marathon

Her morning jog turned into a long run There was a marathon in the city to-
day

Table 1: HYPO examples. Hyperbole Corpus contains original hyperbolic utterances. Paraphrase Corpus
contains a literal paraphrase. Minimal Units Corpus contains examples that contain the hyperbolic words/phrases
in a non-hyperbolic context.

Type Keywords
ECF absolute, complete, entire, pure, whole, im-

possible, never, no, nobody, nowhere, per-
fect, flawless, endless, eternal, infinite, all,
always, every, everybody, everyone, every-
where, definite, exact, undeniable

Quantitative small, big, slow, fast, thin, thick, tall, length,
large, high

Qualitative bad, corrupt, evil, fraud, wicked, chaos,
confusion, disorder, garbage, riot, dead,
hell, misery, murder, nightmare, alarm, fear,
panic, scared, shock, anxiety, autism, blind,
deaf, insomnia, bitter, pierce, sharp, spicy,
toxic, cancer, fever, headache, pain, sad,
suffer, attack, explode, fight, rape, ruin,
wreck, dream, heaven, paradise, utopia, vi-
tal, attract, beauty, charm, grace, handsome,
amaze, good, great, ideal, impress

Table 2: Hyperbole term lists. Type refers to the type
of hyperbole as defined by Mora (Mora, 2009). Key-
words is a list of the keywords in word list.

to be hyperbolic. Additionally, the workers were
then asked to paraphrase the original hyperbolic
sentence such that it was no longer hyperbolic.

The worker responses to the first task were used
to filter out non-hyperbolic utterances resulting in
709 hyperbolic utterances in total, denoted as the
Hyperbole Corpus. The list of hyperbolic tokens
identified by the crowd workers was used to create
a second corpus, denoted the Minimal Units Corpus
(709 sentences). The literal paraphrases also made
up another corpus, the Paraphrase Corpus (709
sentences). Combining these three corpora, every
hyperbolic utterance in the Hyperbole Corpus has
two non-hyperbolic counterparts from the Minimal
Units Corpus and Paraphrase Corpus respectively,
see Table 1. In total just over 2.1k sentences make
up the final version of HYPO.

3 HyperProbe

Our HyperProbe suite consists of synthetic data
generated to probe the ability of models to de-
tect hyperbole1. The suite is created to target the
three types of hyperbole identified by (Mora, 2009):

1https://github.com/biddle-r/HyperProbe

Extreme Case Formulations (ECF), Qualitative
Hyperbole and Quantitative Hyperbole. The cre-
ation of test sentences follows a general four step
procedure:

1. Word List Creation: we create seed word
lists containing words to be used in test sen-
tences. These seed word lists are divided by
part-of-speech class and are created based on
the word lists curated by Mora (2009), see
Table 2, for hyperbole-prone words.

2. Sentence Template Creation: we create syn-
tactic templates to be filled by a sentence gen-
erator. The syntax for sentence templates is as
follows; {TAG} indicates that a word is drawn
from a user-defined seed word list (based
on part-of-speech tags), {TAG} indicates
that the word is drawn from a user-defined
hyperbole-prone seed word list, {MASK} in-
dicates that RoBERTa (Liu et al., 2019) will in-
fill this token, a functionality provided by the
CheckList framework (Ribeiro et al., 2020)2.

3. Test Sentence Generation: consists of the
generation of test sentences, via CheckList,
using the word lists and templates generated
in the previous steps.

4. Manual Assessment and Annotation: we
assess the grammar and semantics of the gen-
erated test sentences and annotate the sen-
tences. Our annotation consists of a binary
label indicating the presence of hyperbolic
content.

3.1 Extreme Case Formulation Tests
ECFs are semantic formulations that invoke ex-
treme descriptions of events or objects (Whitehead,
2015; Pomerantz, 1986). A simple example of
an ECF is a sentence that contains an extreme de-
scription via an adjective (absolute, entire, infi-
nite, etc.), adverb (always, never, etc.), quantifier

2https://github.com/marcotcr/checklist
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(all, none, etc.) or indefinite pronoun (everybody,
nobody, etc.) (Edwards, 2000; Norrick, 2004).
The intentionally non-literal use of ECFs has been
identified as a rich source for hyperbolic expres-
sions (McCarthy and Carter, 2004; Norrick, 2004;
Mora, 2009; Whitehead, 2015; Carston and Wear-
ing, 2015). The detection of ECFs is a fundamental
requirement for a hyperbole detection model, and
we design a set of test sentences to probe this abil-
ity. Given that ECF prone-words from Table 2
belong to various word classes and can appear in a
myriad of grammatical patterns, we design several
sentence templates, see Table 3. Upon comple-
tion of assessment and annotation there were 181
test sentences, 95 (52%) of which were labelled as
hyperbolic, see Table 3.

3.2 Qualitative Hyperbole Tests
Qualitative hyperboles align with the subjective-
emotional dimension of hyperbole (Mora, 2009).
A subjective evaluation made to an excessive de-
gree is the defining feature of qualitative hyper-
boles (e.g., ‘this video is cancer’, ‘Sweet n sour
chicken is God Tier’). The ability to detect and
interpret qualitative hyperbole is a fundamental re-
quirement of a hyperbole detection model. From
the list of qualitative terms in Table 2, we compile
a list containing 54 adjectives. We create six sen-
tence templates to incorporate the adjectives into a
sentence, see Table 4. Upon completion of assess-
ment and annotation there were 306 test sentences,
87 (28%) of which were labelled as hyperbolic, see
Table 4.

3.3 Quantitative Hyperbole Tests
Quantitative hyperboles align with the objective-
gradational dimension of hyperbole (Mora, 2009).
The defining feature of this type of hyperbole is the
up-scaling of an obvious quantity or magnitude to
an excessive degree (e.g., ‘i have a million things
left to do’, ‘this year has felt like a decade’). We
design a set of test sentences that allows us to probe
the ability of models to detect hyperbolic expres-
sions along quantitative dimensions. We use the
list of quantitative terms in Table 2 and their com-
parative forms (e.g., bigger, smaller, lighter, etc.)
as seed word lists for these sentences. We create
two sentence templates to incorporate these into a
sentence, see Table 5. Upon completion of assess-
ment and annotation there were 43 test sentences,
21 (48%) of which were labelled as hyperbolic, see
Table 5.

Figure 1: BERT+PI. Model contains a BERT encoder,
a linear classification head and a Triplet Sampler. We
incorporate PI via the triplet sampler.

4 Privileged Information for Hyperbole
Detection

Our motivation for incorporating privileged infor-
mation into a hyperbole detection model is based
on observations from the foundational work of
Troiano et al. (2018). The authors found that mod-
els trained on hyperboles and literal paraphrases
performed marginally better on the task of hyper-
bole detection than models trained on hyperboles
and non-literal sentences that used the hyperbolic
words/phrases in a non-hyperbole context. We pro-
pose that treating literal paraphrases as privileged
information and incorporating this information into
a hyperbole detection model could improve the
ability of a model to detect when a word or phrase
was being used in an excessive hyperbolic manner.

In our proposed model, BERT+PI, we incor-
porate privileged information via triplet loss. We
utilise a triplet loss because we want to force our
model to differentiate between hyperbolic and non-
hyperbolic usage of words and phrases, and we can
strictly enforce this via triplet loss. Specifically,
by specifying a hyperbolic sentence as an anchor
sample, another hyperbole as a positive sample and
a manually composed literal paraphrase (i.e., PI) as
a negative sample, we are enforcing this difference
in representation space.

4.1 BERT+PI
BERT+PI is based on a multi-task text classifica-
tion framework. We use a triplet sampling module
to sample negative and positive sentences for each
sentence in the dataset. We use BERT (?) to en-
code a representation for each of these sentences
and send the representation of the original sentence
to a linear classification head. Representations of
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Template Example
{DT}{MASK}{MASK}{VB}{JJ} the dishonest words are endless
{DT}{JJ}{MASK}{VB}{MASK} the endless combinations are daunting
{DT}{MASK}{MASK}{RB}{VBa} the code was never cracked
{DT}{MASK}{MASK}{RB}{MASK} the good times always roll
{DT}{MASK}{VBl}{RB}{MASK} the dog was never silent
{DT}{MASK}{MASK}{VBl}{RB} the drug problem is everywhere
{DT}{MASK}{MASK}{DT}{MASK} The mother of every invention
{DT}{MASK}{MASK}{IN}{MASK} all rights reserved in copyright
{DT}{MASK}{VB}{MASK}{MASK} every child will be impacted
{DT}{MASK}{MASK}{MASK}{PRON} The law applies to everybody
{PRON}{IN}{DT}{MASK}{VB}{MASK} nobody on the street is home

Table 3: Extreme Case Formulation Test Examples. Template shows templates as provided to CheckList,
Example is an example sentence as generated by CheckList.

Template Example
{DT}{MASK}{MASK}{VB}{MASK}{JJ} a world that is truly wicked
{DT}{MASK}{VB}{JJ} The argument is confusing
{DT}{MASK}{VB}{MASK}{JJ} The wine is very bitter
{DT}{MASK}{MASK}{VB}{JJ} the oil residue is toxic
{DT}{JJ}{MASK}{VB}{MASK} A great story was completed
{DT}{JJ}{MASK}{VB}{MASK}{MASK} The shocking video was posted here

Table 4: Qualitative Adjectives Test Examples. Template shows templates as provided to CheckList, Example
is an example sentence generated by CheckList.

Algorithm 1 Semi-Random Triplet Sampling

Require: D = [t0, t1, ..., tn]
Require: s ∈ Z+ . Sampling Factor
H ← t∀t ∈ D | t.label == 1 . t.label contains
annotated label for t
P ← t∀t ∈ D | t.label == 2 . N consists of
literal paraphrases (i.e., PI)
S ← ∅
for i = 0, i < |D|, i++ do

a← Di

T ← ∅
for j = 0, j < s, j ++ do

if a.label == 1 then
p← sample(H) . sample(X) draws

a random sample from X
n← p.par . t.par is a literal

paraphrase of t
else if a.label == 0 then

p← sample(P )
n← p.hyp . t.hyp is a hyperbolic

expression of t
end if
T .insert([a, p, n])

end for
S.insert(T )

end for
return S

all three sentences are used in the computation of
the triplet loss. An important aspect of models
based on any type of contrastive loss, including
triplet loss, is the sampling methodology (Wu et al.,
2017). For BERT+PI our triplet sampling algo-
rithm involves randomly sampling examples based
on label and the relationship between a hyperbole
and its literal paraphrase, see Algorithm 1 and see
Table 6 for examples.

The logic in our sampling algorithm is that if the
anchor is a hyperbole, then we randomly sample
another hyperbole as a positive (i.e., same class)
sample for that triplet. We then set the negative
sample to be the literal paraphrase of the positive
sample (note: This sample is PI). This ensures that
optimisation of the triplet loss forces a hyperbole
to be closer to another hyperbole than its literal
paraphrase in representation space.

If the anchor is not a hyperbole, we randomly
sample a literal paraphrase as a positive sample
for that triplet (note: This sample is PI). We then
set the negative sample to be the hyperbole of the
positive. The motivation here is that optimisation
of the triplet loss will result in a non-hyperbolic
sentence and a literal paraphrase being closer in
representation space than a non-hyperbolic text and
a hyperbole.

Formally, the class probability for an individual
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Template Example
{MASK}{MASK} is as {JJ} as {MASK}{MASK} my heart is as heavy as the world
{MASK}{MASK} is {JJR} than {MASK}{MASK} this version is longer than I expected

Table 5: Quantitative Dimensions Test Examples. Template shows templates as provided to CheckList, Example
is an example sentence generated by CheckList.

Anchor Positive Negative
Inviting my mother-in-law to stay here
is a recipe for disaster.

He eats a mountain of junk food. He eats a lot of junk food.*

This supersonic airliner breaks the sound
barrier.

Football is important to him.* Football is his oxygen.

Table 6: Semi-Random Triplet Sampling - Example Triplets. Anchor indicates an anchor text. Positive indi-
cates a positive text. Negative indicates negative text. Note: * indicates that the example is PI.

sentence is calculated by BERT+PI as follows:

ŷi = σ(eai W + b), (1)

where eai is the dense representation of anchor ex-
ample i computed by BERT, WY and bY are learn-
able parameters and σ is a softmax function. The
model is optimised via multi-task loss, see eq. 2.

L = Lc + λLt (2)

Where Lc is a binary cross entropy loss (eq 3), and
Lt is a triplet loss (see eq. 4). λ is a parameter to
weight the importance of the triplet loss and as a
result the influence of the PI. In the cross-entropy
loss, yi is a binary indicator for class label, and ŷ is
the prediction output from eq. 1. In the triplet loss,
D is the cosine distance, m is a hyperparamater
indicating the margin, eai , e

p
ij , e

n
ij are the BERT rep-

resentations for an anchor, positive and negative
sample, and s is the sampling factor (i.e., how many
positive and negative examples per anchor).

Lc = −
1

N

N∑

i=1

[
yi log(ŷi) + (1− yi) log(1− ŷi)

]

(3)

Lt =
1

Ns

N∑

i=1

s∑

j=1

[
max(D(eai , e

p
ij)−D(eai , e

n
ij)+m, 0)

]

(4)

5 Experiments

5.1 Baselines
We implement models presented in previous re-
search on hyperbole as baseline methods for our
experiments on hyperbole detection. Troiano et al.
(2018) introduce an NLP pipeline style approach
to detecting hyperbole in their foundational work

on computational hyperbole detection. They in-
troduce a number of hand-crafted features that are
motivated by findings from cognitive linguistics on
the mechanisms humans use for identifying and
interpreting hyperbole. These features range from
unexpectedness, imageability, polarity, subjectivity
and intensity. These features are concatenated to-
gether and referred to as QQ (i.e., Qualitative and
Quantitative) features by the authors, we adhere to
that nomenclature and refer to our implementation
of these features as QQ for the remainder of the
paper. The authors experiment with several ‘tra-
ditional’ statistical learners for the classification
layer of their pipeline. We use Logistic Regression
and Naive Bayes, as those two methods were more
accurate at the detection of hyperbole compared to
the other methods in their experiments. We refer
to these methods as LR+QQ and NB+QQ for the
remainder of the paper.

Follow on from that work Kong et al. (2020)
leverage the QQ features adjusting them slightly to
compensate for differences in language and utilise
pre-trained language models (i.e., BERT) for a hy-
perbole detection model. The authors combine
the QQ features with the output from the BERT
embeddings and pass the concatenated vector to a
linear classification layer. We refer to this model
as BERT+QQ in the remainder of the paper. We
also include a simple vanilla BERT baseline that
we refer to as BERT in the remainder of the paper.

5.2 Experiment Setup

We merge the Hyperbole Corpus and Minimal
Units Corpus from HYPO and split into train-dev-
test sets based on a 70:20:10 ratio. The Paraphrase
Corpus is treated as a source of PI and thus only
available at training time, also note that no sen-
tences from HyperProbe were used for training,

62



Anchor Positive Negative
When the girl lost her puppy she cried
an ocean of tears.

The little girl was drowning in her
tears.

The little girl was crying a lot.*

I was crying for leaving my home. My dad’ll be very angry when he finds
out that I wrecked his car.*

My dad’ll hit the roof when he finds out
that I wrecked his car.

Table 7: Triplet Samples. Examples of anchor, positive and negative samples generated by triplet sampler. Note:
* indicates PI.

Hyperparameter Values
Dropout 0.1, 0.2, 0.3
Learning Rate 1e-04, 1e-05, 1e-06
λ 0.25, 0.5, 1
s (Sampling Factor) 1, 3, 5
Encoder BERT, RoBERTa

Table 8: Hyperparameter search. Hyperparame-
ter indicates the hyperparameter. Values indicates the
values used in search. Note: Not all parameters are
applicable for all models (i.e., λ, s only required for
BERT+PI)

.

Model F1 Precision Recall
LR+QQ 0.710(-) 0.679(-) 0.745(-)
NB+QQ 0.693(-) 0.689(-) 0.696(-)
BERT 0.709(.064) 0.711(.077) 0.735(.177)
BERT+QQ 0.671(.086) 0.650(.147) 0.765(.246)
BERT+PI 0.781(.012) 0.754(.053) 0.814(.039)

Table 9: HYPO Results. We provide the mean F1,
precision and recall score as well as standard deviation
across three runs for all models.

only testing. Overall we are left with four test
datasets, HYPO, Extreme Case Formulations, Qual-
itative Hyperbole and Quantitative Hyperbole. We
perform grid-search to find optimal hyperparame-
ters for BERT, BERT+QQ, BERT+PI, see Table
8.

6 Results

6.1 HYPO

Results of our experiments on HYPO show that
models that incorporate PI outperform the base-
lines, with respect to F1 score, see Table 9. We see
a .071 (10%) increase in F1 for BERT+PI over the
best performing baseline (LR+QQ). We use LIME
(Ribeiro et al., 2016) to provide explanations for
model predictions, see Figure 2. From this Fig-
ure we see examples that suggest that the increase
in both precision and recall for BERT+PI seen in
Table 9 is a result of a better contextual understand-
ing of hyperbole-prone ECF terms. The first two
examples in particular highlight the understanding
of the word ‘brainless’ in both a hyperbolic and

Model F1 Precision Recall
LR+QQ 0.678(-) 0.747(-) 0.621(-)
NB+QQ 0.523(-) 0.690(-) 0.421(-)
BERT 0.490(.340) 0.751(.158) 0.516(.453)
BERT+QQ 0.540(.337) 0.721(.184) 0.632(.484)
BERT+PI 0.701(.014) 0.756(.033) 0.656(.047)

Table 10: Hyperprobe Results. Extreme Case For-
mulations

Model F1 Precision Recall
BERT 0.407(-) 0.333(-) 0.522(-)
BERT 0.336(-) 0.400(-) 0.290(-)
BERT 0.278(.275) 0.240(.209) 0.401(.497)
BERT+QQ 0.352(.307) 0.255(.227) 0.599(.529)
BERT+PI 0.527(.030) .486(.054) 0.590(.089)

Table 11: Hyperprobe Results. Qualitative Hyper-
bole

non-hyperbolic context that are correctly classified
by BERT+PI.

6.2 Extreme Case Formulations

From Table 10 we see models that incorporate
PI provide improvements in detecting ECF hyper-
bole, .023 increase in F1, compared to LR+QQ.
This aligns with results observed in Section 6.1
regarding the better understanding of hyperbole-
prone ECF words in hyperbolic and non-hyperbolic
contexts by BERT+PI compared to the baselines.
We provide LIME explanations, (see Figure 3),
and again observe examples that indicate a better
contextual understanding of hyperbole-prone ECF
terms by BERT+PI.

6.2.1 Qualitative Hyperbole
From Table 11 we observe that all models strug-
gle to detect qualitative hyperbolic expressions,
BERT+PI achieves the highest F1 of only 0.527
with a sub-0.5 precision of 0.486. With respect
to variance we see many models with wild vari-
ances in recall, (.529, .497), suggesting that some
of these runs are degenerating to outputting all pos-
itive class or all negative class predictions. These
results suggest that qualitative hyperbole is harder
to detect than ECF hyperbole.
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Figure 2: Model Explanation Comparisons - HYPO. LIME Word Weightings indicate the importance of a word
for a particular class, orange highlights indicate hyperbolic words, blue highlights indicate non-hyperbolic words.
P(h) is the prediction probability that a sentence was hyperbolic with red indicating an incorrect classification
(assuming a .5 decision threshold)

Figure 3: Model Explanation Comparisons ECF Tests.

Model F1 Precision Recall
LR+QQ 0.615(-) 0.5(-) 0.8(-)
NB+QQ 0.565(-) 0.5(-) 0.65(-)
BERT 0.576(.048) 0.463(.001) 0.775(.177)
BERT+QQ 0.552(.183) 0.470(.073) 0.733(.379)
BERT+PI 0.590(.088) 0.492(.048) 0.750(.200)

Table 12: Hyperprobe Results. Quantitative Dimen-
sions

6.2.2 Quantitative Hyperbole
From Table 12 we see that all models struggle to
detect quantitative hyperbole and display a simi-
lar pattern of high recall (0.633 to 0.800) and low
precision (0.463 to 0.5).

From an analysis of LIME explanations we iden-
tified one particular decision pattern as the source
of many false positives. For sentences gener-
ated using the comparative sentence template (i.e.,
{MASK}{MASK} is as {JJ} as {MASK}{MASK}),
the model always predicts a hyperbole irrespective
of the comparison being made (see Figure 4). We
observe that the first word of the sentence and the
words and phrases ‘is’, ‘as’, ‘is as’ and ‘as a’ are
the most influential words that lead to the decision
to classify the sentence as a hyperbole. Our hy-
pothesis for this error is that the literal paraphrases

Figure 4: LIME Explanations - Quantitative Dimen-
sions

of hyperbolic expressions that take this form re-
move many tokens from the original sentence (e.g.,
‘He’s as mad as a hippo with a hernia’ → ‘He’s
very mad’). We suspect this contributes to partic-
ular words and phrases (e.g., ‘is as’ and ‘as a’)
being incorrectly considered hyperbolic because
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they were removed from the original sentence dur-
ing the literal paraphrase. We also note, that this is
a particularly common form of hyperbolic expres-
sion in the training data (e.g., ‘There lived a man
as big as a barge’ ‘He has as many debts as a dog
has fleas’, ‘He’s as mad as a hippo with a hernia’.
‘you look as white as a ghost’).

7 Related Work

Troiano et al. (2018) posed the hyperbole detection
task as a binary sequence classification task and
introduced a dataset of annotated hyperbole as a
benchmark for this task. The existing methods for
detecting hyperbole, albeit scant, share similari-
ties to methodologies for solving the problem of
detecting other figures of speech. Generally, fea-
tures are hand-crafted based on linguistic insights
of a particular phenomenon (e.g., hyperbole) then
combined with general purpose representations of
textual content (Barbieri and Saggion, 2014; Joshi
et al., 2016; Troiano et al., 2018; Abulaish et al.,
2020). We see this in sarcasm detection (Joshi
et al., 2016), irony detection (Barbieri et al., 2014)
and metaphor detection (Jang et al., 2015). With
respect to hyperbole, we see this approach in the
foundation work on hyperbole detection (Troiano
et al., 2018). Approaches to figurative language
detection based on deep learning models have been
also developed, such as irony detection (Huang
et al., 2017), sarcasm detection (Ghosh and Veale,
2016) and metaphor detection (Wu et al., 2018).
With respect to hyperbole detection, research has
shown that deep learning improves accuracy on the
task of detection of hyperbole in Mandarin Chinese
compared to the use of traditional statistical learn-
ers (Kong et al., 2020). We extend upon both of
these works by introducing a new model for hyper-
bole detection and introducing new data to evaluate
hyperbole detection models.

Recent research in NLP, and machine learning
in general, has focused on the idea of explainability
and interpretability. The problem of understanding
the reasoning behind decisions made by increas-
ingly complex models on increasingly complicated
data is a core challenge and can be a roadblock to
research progress (Ribeiro et al., 2016, 2020; Bhatt
et al., 2020; Linardatos et al., 2021). We design a
suite of synthetic test sentences to probe the capa-
bilities of hyperbole detection models and utilise
the LIME framework(Ribeiro et al., 2016) for local
explainability to understand the reasoning behind

the decisions made by hyperbole detection models.
Our approaches to probing and explainability are
based on existing efforts to uncover meaning in de-
cisions made by NLP models (Ribeiro et al., 2016,
2020; Rogers et al., 2020; Liu et al., 2021).

8 Conclusion

In this paper we proposed a hyperbole detection
model, BERT+PI, that incorporates PI via triplet
loss with a pre-trained language model (BERT)
into a multi-task text classification framework for
hyperbole detection.

Experiment results showed improvements in de-
tection using standard information retrieval metrics
(i.e., F1, precision and recall), for models that in-
corporate PI on the HYPO test set. However, these
results were not maintained across our synthetic
test suite HyperProbe. In fact, only on the ECF
test in HyperProbe did we observe similar results.
On both the quantitative and qualitative hyperbole
tests we observed poor performance.

Our hypothesis for this disparity is that the incor-
poration of PI into BERT+PI teaches the model to
learn annotation artifacts introduced by the creation
of literal paraphrases in the Paraphrase Corpus of
HYPO. Specifically, ECF hyperbole can often be
paraphrased quite simply by removing only a few
tokens (e.g., what an absolute idiot→ what an id-
iot). BERT+PI effectively incorporates this infor-
mation well and as a result appears to be able to dif-
ferentiate between hyperbolic and non-hyperbolic
ECFs. However, for more complex hyperbole, un-
wanted annotation artifacts are introduced during
the process of creating a literal paraphrase. For ex-
ample, ‘my heart is as heavy as the world’ could be
paraphrased as ‘i am sad’. In this paraphrase, the
contrast and the semantic scale of the hyperbole are
lost in the paraphrase given the significant differ-
ence between the hyperbole and the paraphrase. In
future work, exploring better annotation methods
for complex hyperbole that encode the semantic
scale and the source of excessive contrast will be
an important focus to overcome the shortcomings
caused by unwanted annotation artifacts.
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Abstract

Text-pair classification is the task of determin-
ing the class relationship between two sen-
tences. It is embedded in several tasks such as
paraphrase identification and duplicate ques-
tion detection. Contemporary methods use
fine-tuned transformer encoder semantic rep-
resentations of the classification token in the
text-pair sequence from the transformer’s fi-
nal layer for class prediction. However, re-
search has shown that earlier parts of the
network learn shallow features, such as syn-
tax and structure, which existing methods do
not directly exploit. We propose a novel
convolution-based decoder for transformer-
based architecture that maximizes the use of
encoder hidden features for text-pair classifi-
cation. Our model exploits hidden represen-
tations within transformer-based architecture.
It outperforms a transformer encoder baseline
on average by 50% (relative F1-score) on six
datasets from the medical, software engineer-
ing, and open-domains. Our work shows
that transformer-based models can improve
text-pair classification by modifying the fine-
tuning step to exploit shallow features while
improving model generalization, with only a
slight reduction in efficiency.1

1 Introduction

Text-pair classification determines the class rela-
tionship between two sentences; for example, it
determines the inference class relationship (entail-
ment, contradiction, or neutral) between a premise
and a hypothesis (Bowman et al., 2015). Such clas-
sification requires interpreting the semantic con-
tent of sentences to determine their relationships.
Applications of text-pair classification, which we
experiment with here, are natural language infer-
ence (Bowman et al., 2015), question answering
candidate ranking (Ben Abacha et al., 2019) and
duplicate question detection (Wang et al., 2019a;

1Code and dataset will be released upon publication.

Yang et al., 2019). For these tasks, we consider
open, biomedical, and software engineering do-
mains.

Contemporary methods in text-pair classifica-
tion use transformer encoder networks, such as
BERT (Devlin et al., 2019), which are popular in
natural language processing (Wang et al., 2019b;
Sun et al., 2019; Zhu et al., 2019). For these en-
coder models, there are several studies improving
the model in different aspects. Liu et al. (2019b)
and Yang et al. (2019) introduce improvements to
the pretraining by removing Next Sentence Pre-
diction (NSP) and using a larger batch-size with
the LAMB optimizer (You et al., 2020). SciB-
ERT (Beltagy et al., 2019) pretrains BERT over
publications from SemanticScholar and adjusts the
model’s vocabulary to be domain-specific. AL-
BERT (Lan et al., 2020) increases model depth,
adds layer parameter sharing, and includes the sen-
tence coherence over NSP.

These studies primarily improve the transformer
architecture by scaling up overall model capacity
through dataset source (Lee et al., 2019; Alsentzer
et al., 2019) and adjustment of the pretraining
task (Lan et al., 2020; Joshi et al., 2019). They
use only the classification token as the primary fea-
ture for classification. These improvements also
require pretraining the architecture, which requires
a high amount of computing resources.

Increasing model size and complexity is not
the only approach to improve transformer-based
models. Recent research shows that these models
capture different levels of information at different
layers in the network (Tenney et al., 2019). The
information encoded in these levels are surface-
level, structural and syntactic in the lower lay-
ers, and semantic in the upper layers (Jawahar
et al., 2019). Shallow features are potentially
useful because interpreting the semantic content
of sentences may be difficult without additional
knowledge. For instance, in software engineering
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question-answering, structural knowledge and pro-
gram syntax may aid in recognizing jargon in a
programming question or the grammar of a pro-
gram; a program does not work if the syntax is
incorrect (e.g., func() vs. func{} only differ by
bracketing in the context of the programming lan-
guage). Likewise, in medical queries, the structural
and syntactic information helps recognition of med-
ical charts; for instance, blood pressure is written
as BP 80/50 and understanding this structure and
syntax (numbering order) aids in the semantic in-
terpretation of hypotension.

We investigate the value of these structural, syn-
tactic and semantic features in existing pretrained
models for text-pair classification tasks in the med-
ical and software engineering fields. Our model ad-
justs the decoder to use the hidden representations
of the BERT transformer encoder model by com-
bining shallow and deep feature representations
of the input sentences. As our method involves
adjusting the decoder, there is no requirement to
pretrain the network, allowing it to be extended to
all transformer-based encoders. Our main contribu-
tions are summarized as follows:

1. We design a decoder architecture to exploit
shallow and deep representations from a trans-
former encoder-based architecture inspired
by previous research on the learning capac-
ity in BERT (Jawahar et al., 2019; Tenney
et al., 2019). Our convolution-based decoder
complements the parallel computation within
transformers and ensures that computing fea-
tures earlier in the network does not sacrifice
overall efficiency.

2. We explore multi-gradient propagation in
transformer architectures to adapt features
from earlier layers in the network for more
direct use in the downstream task. This propa-
gation also improves generalization on tasks
with fewer high-quality training samples.

3. We evaluate and analyze our methodology on
natural language inference, question entail-
ment and duplicate question detection task
that use text-pair classification. Our experi-
ments are in three domains: medical, software
engineering, and open-domain. The diversity
of domains tests the generalizability of our
methods.

4. We automatically create and release a bal-
anced duplicate question detection dataset of

1.6 million English question pairs from Stack-
Overflow.

2 Related Work

Text-pair classification is a specialization of text
classification. Early studies on text-pair classifi-
cation used rule-based inference from a knowl-
edge base of patterns and templates for textual
entailment (Dagan and Glickman, 2004). This
was superseded by supervised probabilistic mod-
els such as support vector machine (Malakasio-
tis and Androutsopoulos, 2007), naı̈ve bayes, and
decision trees (Newman et al., 2006), as well as
unsupervised algorithms such as k-Nearest Neigh-
bours (Inkpen et al., 2006).

Since 2014 (Kim, 2014), neural network-based
techniques dominated the field. They are based
on Convolutional Neural Network (CNN)-based
encoders (Mou et al., 2016; Yin et al., 2016),
Long Short-Term Memory (LSTM) and Recurrent
Neural Network (RNN) sentence interaction en-
coder models (Liu and Huang, 2016; Lan and Xu,
2018a,b) which use shallow reasoning over sen-
tences to capture semantics. These methods are lim-
ited by their model’s receptive fields, as they cannot
model deep semantic contextual knowledge and do
not directly capture shallow information (Devlin
et al., 2019).

Transformer-based methods The above men-
tioned limitations are contrasted by transformer-
based models (Devlin et al., 2019). Although not
strictly designed for text-pair classification, these
models can take in pair sentence inputs for classi-
fication as well as a variety of other tasks (Wang
et al., 2019a).

These models have subsequently seen a rise in
the medical (Ben Abacha et al., 2019; Alsentzer
et al., 2019; Lee et al., 2019) and software engi-
neering fields (Zafar et al., 2019; Tabassum et al.,
2020). In medical text-pair classification, there are
model ensembles (Zhu et al., 2019; Ben Abacha
et al., 2019) which exploit knowledge from multi-
task learning. However, these models are compu-
tationally expensive, using several multi-task deep
neural networks (Liu et al., 2019a) and SciBERT
models for a single prediction, which prevents their
use in applications where continual retraining is
required. Several improvements to the transformer
model in the medical domain involved using dou-
ble transfer learning, where the model is further
pretrained on the target domain before fine-tuning.
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BlueBERT(Peng et al., 2019) and BioBERT (Lee
et al., 2019) used additional pretraining data from
PubMed whereas ClinicalBERT (Alsentzer et al.,
2019) used a clinical dataset MIMIC-III (Johnson
et al., 2016) for pretraining data. We note that these
do not change the underlying architecture of en-
coders, and instead improved the model’s effective-
ness on downstream tasks via additional pretraining
on the target domain or increasing ensemble size.
Our work explores the feasibility of utilizing the
underlying architecture instead.

CNN-based methods Our work is inspired by
previous studies in text classification and computer
vision. From text classification, Very Deep Convo-
lutional Neural Network (VDCNN) (Conneau et al.,
2017) is a deep convolutional neural network for
text classification. VDCNN shows the importance
of shortcut connections used heavily in Residual
Networks (He et al., 2016) for effective gradient
propagation when training deep networks, and k-
max pooling for selecting the strongest signals for
classification.

In computer vision, GoogleNet (Szegedy et al.,
2015) introduced auxiliary multi-gradients dur-
ing training to solve the vanishing gradient prob-
lem (Hochreiter, 1998). Solving the vanishing gra-
dient problem is important as early layers in deep
neural networks contain information that correlates
more strongly with the input sequence. However,
these layers receive less information from gradient
propagation as the gradient is propagated from the
output layer to the rest of the network—where each
non-linearity the gradient passed through caused
a sharp reduction in its magnitude. Auxiliary clas-
sifiers are added to the intermediate layers for in-
creased gradient propagation to the early and in-
termediate layers while constraining the network
to utilize early and intermediate features for image
recognition. We experiment with auxiliary classi-
fiers in our work.

3 Deeply Interconnected Convolutional
Transformer Network

Transformer encoders learn different features of a
language at different layers (Jawahar et al., 2019;
Tenney et al., 2019). We explore if combining
shallow features alongside deep features would im-
prove the effectiveness of representation learning.
We therefore design a new method that exploits all
the hidden features within the transformer encoder.
We use CNN-based decoders connected to each

layer of the transformer encoder as a low-parameter
fully-connected network (Lin et al., 2014) to com-
bine hidden features in a highly parallelized man-
ner. In doing so, multiple gradient flows (Szegedy
et al., 2015) are subsequently introduced, allowing
gradient propagation to shallower network layers
and aiding the learning of downstream language
features in earlier parts of the network.

However, the efficacy of multiple gradient flow
is determined by convergence, which poses a signif-
icant challenge for our method as we use randomly
initialized decoders together with a pretrained de-
coder. These two models expect different input
distributions. To tackle this problem, we adopt
convolutional components to help in dimensional-
ity reduction and use larger batch-sizes with the
LAMB optimizer (You et al., 2020) and One Cycle
Policy (Smith, 2018) for hyper-convergence. We
also include residual connections to ensure a stable
gradient throughout the network.

We use convolutional components over LSTMs
as the recurrent step is non-parallelizable (Vaswani
et al., 2017) and slowdown the parallel computa-
tion in the transformer. We adopt two configura-
tions similar to VDCNN and GoogleNet to test the
generality of our method. We demonstrate that a
stronger capability of learning is enabled by our
method in text-pair classification tasks, especially
for domains that require structural and syntactic
knowledge such as the medical and software engi-
neering domains.

3.1 Convolutional Transformer Encoder

Our first proposed network is a Convolutional trans-
former Encoder(TEconv), where each encoder hid-
den layer is connected to a residual block in the
decoder (Figure 1). We base this approach on past
research, which shows that BERT learns surface-
level, syntactic, and semantic features, but at dif-
ferent layers (Jawahar et al., 2019; Tenney et al.,
2019). Thus, combining the final semantic output
with earlier representations could aid downstream
tasks. A possible approach is to concatenate all
hidden states together. However, this approach is
intractable at higher sequence lengths and dimen-
sions, which causes overfitting. Another approach
is to use a linear combination, scalar mix, or simple
averaging (Tenney et al., 2019; Peters et al., 2018).
However, this approach loses information from the
summation (e.g., it may add to zero) which reduces
generalization. Instead, as an intermediary, we use
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Figure 1: Network architecture of the Convolutional
BERT Model.

1-convolutional filters as information transforma-
tion gates to transform hidden representations, Hi,
and add it to the next hidden representation, Hi+1:

Oi+1 = RB(Hi) +Hi+1, (1)

where RB denotes a Residual Block, and Oi+1 is
the output for layer i + 1 in the decoder network.
Here, a residual block (Conneau et al., 2017) con-
sists of a single 1-convolution operation along the
sequence dimension. This 1-convolution acts as a
fully connected linear layer across all channels with
very few additional parameters (Lin et al., 2014).

Additionally, due to the use of ReLU activation
function and convolutional operations, output of
the CNN network must be non-negative. This out-
put bound is in contrast with the transformer En-
coder network with no bounds on the outputs. How-
ever, upon inspection, we find that the values were
positive and negative and close to zero. To alle-
viate some of the distribution mismatch, we use
batch normalization (Ioffe and Szegedy, 2015) on
the hidden states inputted into the residual blocks.

3.2 Convolutional Transformer Encoder with
Auxiliary Networks

Our second method, TEaux uses auxiliary net-
works (Szegedy et al., 2015) to propagate gradients

to different areas of the transformer network (see
Figures 2 and 3).

An auxiliary network takes in J different hid-
den representations, Hi:i+j , from the transformer
network. Each hidden representation undergoes
dimensionality reduction using a 1-convolution to
produce an output, Ci, with a feature dimension
of dim(Hi)/j. These outputs, Ci:i+j , are concate-
nated and fed to a residual block, followed by k-
max pooling and a fully connected layer. During
inference, like GoogleNet, only the output of the
final auxiliary network is used and the training loss
function, φfinal, is given as a weighted sum of the
auxiliary networks:

φfinal = φNA + α
N−1∑

i=1

(φiA), (2)

where φiA denotes the loss value of the ith auxil-
iary network, N denotes the number of auxiliary
networks, and α denotes the weight of loss value
of the non-terminal auxiliary networks. We set
α = 0.3, as this was the value used in the origi-
nal GoogleNet (Szegedy et al., 2015). We do not
connect the auxiliary networks to avoid gradient
explosions due to the double-counting of auxiliary
losses propagating in the network.

We use k-max pooling before the fully connected
layer for both networks to select a subset of the
strongest k-signals from the feature maps. We do
this for two reasons: (1) it drastically reduces the
parameters in the linear layer for reduced computa-
tion cost; and, (2) it adds a layer of interpretability
as the k-signals may be converted back to tokens.
However, due to the bidirectional nature of trans-
formers and padding of input, interpretability may
be lost as strong signals could be from the padded
portion of the sequence, which is not interpretable.
In this case, attention flow (Abnar and Zuidema,
2020) might be better.

We do not use dropout in our models as dropout
is a hyperparameter that requires careful tuning,
which adds additional complexity.

We use pretrained weights from BERT small;
however, with the exclusion of dropout, results may
deviate from the literature (Wang and Manning,
2013). To avoid confusion, we named this BERT
variant as Transformer Encoder (TE).

4 Datasets

We use two datasets from medical and software en-
gineering because these domains may benefit from
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Figure 2: Network architecture of Convolutional Trans-
former Encoder with auxiliary networks.

Figure 3: Architecture of the Convolutional auxiliary
network.

the structural and syntactic knowledge for down-
stream tasks. We also use two datasets from the
open-domain to test the generality of our method.

MEDIQA The MEDIQA challenge (Ben
Abacha et al., 2019) was part of the BioNLP
2019 shared task. It features three separate
tasks: (1) Recognizing Question Entailment
(RQE), requiring binary entailment classification
between text-pairs for 8,588 medical questions;
(2) MEDical Natural Language (MEDNLI), a
multi-label classification between premises and
hypotheses for 14,049 clinical text-pairs; and, (3)
Question Answering involving binary relevance
classification and re-ranking between a query
and retrieved answer for 476 medical questions.
These datasets are smaller than those found in
the open-domain because obtaining open medical
data is difficult due to ethical, legal, and monetary
concerns (Pampari et al., 2018; Nguyen, 2019; Ive
et al., 2020). We use 5-fold cross-validation to

Original Question Conversion Error setting value for ‘null
Converter’ - Why do I need a Converter in JSF?
Duplicate Question selectOneMenu with complex objects, is
a converter necessary?
Negative Sample Conversion Error setting value ‘1’ for ‘null
Converter’

Figure 4: Stack Overflow dataset examples.

generate non-overlapping training, validation, and
testing splits as such, our results are not directly
compared to the state-of-the-art (SOTA).

Stack Overflow Dataset To test our methods on
a substantial, technical dataset, we create one in the
Software Engineering field. Our Stack Overflow
Duplicate Question dataset evaluates the perfor-
mance of our methods and its ability to generalize
on specialized technical domains. To create the
dataset, we use Okapi BM25 scoring (Robertson
et al., 1994) from ElasticSearch with default param-
eters and word embeddings. Specifically, we use
question titles, which we expand with word embed-
dings trained on the Stack Overflow corpus (Efs-
tathiou et al., 2018) for querying. For each word in
the query, we found the three most similar words
in the embedding space via cosine distance and
added this to the original query, Q, as expansion
terms, E. To promote diversity, we empirically set
the weights of the E in to be 1.3 (multiplicative),
which is higher than Q at 1.0. These expanded
queries, (Q,E), were used to select candidates
with the highest BM25 scores not already marked
as a duplicate of Q. An example from the dataset
is shown in Figure 4. This dataset consists of 1.6
million question pairs, with a balanced label distri-
bution. To our knowledge, this is the first dataset
created from StackOverflow with difficult exam-
ples for text-pair classification before this work.

Open-domain We also benchmark our model
against two open-domain datasets: (1) the Stan-
ford Natural Language Inference (SNLI) (Bowman
et al., 2015) benchmark containing a collection of
570,000 text-pairs, a multi-label inference classi-
fication task; and, (2) Quora (Wang et al., 2019a),
a duplicate question detection dataset of 404,000
text-pairs.

5 Experimental Setup

We use FastAI (Howard and Gugger, 2020), a
PyTorch-based library. We use a one cycle pol-
icy learning rate scheduler over a cycle length of
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Method A P R F1

Open-Domain

SNLI

TE 0.798 0.599 0.609 0.604
TEconv 0.869† 0.653‡ 0.657† 0.657
TEaux 0.830 0.624 0.633 0.627
SOTA 0.923 (Liu et al., 2019b)

Quora

TE 0.811 0.739 0.755 0.747
TEconv 0.880‡ 0.842‡ 0.832‡ 0.836‡
TEaux 0.879‡ 0.811‡ 0.878‡ 0.843‡
SOTA 0.923 (Yang et al., 2019)

MediQA

NLI

TE 0.335 0.112 0.333 0.170
TEconv 0.797‡ 0.797‡ 0.797‡ 0.797‡
TEaux 0.728‡ 0.761‡ 0.727‡ 0.723‡
SOTA 0.980 (Ben Abacha et al., 2019)

RQE

TE 0.557 0.278 0.500 0.358
TEconv 0.536 0.567‡ 0.535 0.490‡
TEaux 0.911† 0.9416‡ 0.925‡ 0.908‡
SOTA 0.749 (Ben Abacha et al., 2019)

QA

TE 0.575 0.287 0.500 0.365
TEconv 0.718 0.714‡ 0.713‡ 0.709‡
TEaux 0.947‡ 0.944‡ 0.947‡ 0.945‡
SOTA 0.783 (Ben Abacha et al., 2019)

Stack Overflow DQD
TE 0.919 0.929 0.907 0.918
TEconv 0.943 0.960 0.926 0.942
TEaux 0.939 0.952 0.924 0.938‡

Average
TE 0.667 0.502 0.592 0.529
TEconv 0.779 0.743 0.729 0.724
TEaux 0.846 0.809 0.810 0.798

Table 1: Accuracy (A), Precision (P), Recall (R) and
F1-Score of different datasets. Note: † denotes a statis-
tical significance of p < 0.05 and ‡ for p < 0.001.

15 epochs with a Label Smoothing Cross-Entropy
loss and the LAMB optimizer. The peak learning
rate was found using the learning rate exploration
tool in FastAI. We use a batch size of 255 and
a maximum sequence length of 64 for all tasks.
For all other settings, we use defaults from the Py-
Torch transformer library (Wolf et al., 2019). We
choose the best model over the 15 epochs based
on the validation accuracy for test set inference.
For reproducibility, we use the same seed for each
experiment.

We train our models on a single GPU, V100
Tesla 16 GB. Training is repeated five times for
each configuration to collect reliable statistics for
paired t-test significance testing.

6 Results and Discussion

Effectiveness of the model under different
dataset constraints We compare our model in
differing constraints. We select the domain type
(open or closed), and dataset size as constraints.
We first discuss the main results.

On the SNLI dataset, a large open-domain
dataset, the TEconv model performs the best across
all metrics. A similar observation is made for the
stack overflow dataset, a large technical domain
dataset, where the TEconv model performs the best.

On both datasets, the TEconv model with auxiliary
networks also performs better than the baseline.
This suggests that the model performs well in data-
rich environments.

This result contrasts with results from the smaller
specialized datasets such as the MediQA collection.
In these datasets, we see that the TE model over-
fits on all three medical tasks; this is apparent as
the training and validation loss is lower on the TE
model than the convolutional-based models. This
means the model failed to generalize as test set
performance was low despite performing well on
the validation/training sets. This performance may
be from vocabulary disparity between the train/test
sets and the additional gradients which allowed
convolutional models to reach a better optimum
through regularization (Szegedy et al., 2015). On
the NLI dataset, TEconv significantly improves over
TE and is stronger than TEaux, suggesting that us-
age of all twelve layers of TE is useful for inference
tasks. By contrast, TEaux performed better on RQE
and QA as TEconv overfit on RQE and performed
worse on QA.

Finally, on the Quora dataset, both TEconv mod-
els performed significantly better (p < 0.05) with
the TEaux performing better in recall and F1-score
while TEconv performed better in terms of accuracy
and precision. We note that our models do not
match the state-of-the-art performance due to lack
of large model ensembling and much lower total
parameter count (Yang et al., 2019; Ben Abacha
et al., 2019; Zhu et al., 2019) as our study is fo-
cused on investigating the usefulness of shallow
features. However, our framework could poten-
tially be applied to the current state-of-the-art mod-
els to improve their performance.

To summarize, the TE model performs poorly
in the low-resource technical setting as reflected
by the MediQA dataset results, MediQA has fewer
training examples compared to the open-domain
which made it challenging to train due to over-
fitting. However, we found that increased gradi-
ents allowed for better generalization. Therefore,
in this low-resource setting, the convolutional TE
model seems more suitable. Additionally, in more
data-rich environments such as the Quora, Stack
Overflow and SNLI datasets, we found the models
performed better. However, on the Stack Over-
flow dataset, where the model performs better than
the baseline, it was not statistically significant due
to large variance between runs (σ = 0.02 for F1-
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Figure 5: Average gradient over three epochs for all
models on the SNLI dataset.

score).

Does including additional features from the
lower layers of the network help prediction?
For each domain, we select a dataset, and we
analyze text-pairs to see situations where TEconv
benefits from additional features over the base-
line. From Table 2, on the StackOverflow dataset,
we see benefits from understanding using struc-
tural features and program syntax to differenti-
ate between programming languages (e.g., angu-
lar and PHP). Similarly, on the MedNLI dataset,
the model better understands medical numerical
chart structure and syntax which guided better se-
mantic understanding; which transformer encoders
have been known to struggle with (Nguyen et al.,
2019). Open-domain interpretation is more diffi-
cult, for instance, on the SNLI dataset, it seems
additional training gradient, rather than shallow
features, helped the model to learn co-reference res-
olution. Co-reference resolution may have helped
guide the semantic understanding between sentence
pairs, as this task is typically learned in deeper lay-
ers of the network (Tenney et al., 2019).

Furthermore, the model allows for improved gra-
dient flow in the network, as shown in Figure 5,
where the average gradient over three epochs on
the SNLI is depicted. To illustrate each layer, we
average all the gradients at that particular level.
Specifically, the query, value, key attention weights
gradients’ are all averaged together in each hid-
den encoder layer. For the TE network, there is
a diminishing gradient flow, a downwards slope,
throughout the network. This slope contrasts with
the TEconv networks, which show a general increase
in gradient flow (positive slope) throughout the net-
work, allowing for learning in shallower layers of
the network; which is useful because the shallower

Figure 6: Average gradient over three epochs for all
models on the SNLI dataset with Embedding Layer.

Figure 7: Average gradient over three epochs for all
models on the SNLI dataset for the embedding Layer.

features, which are more correlated with the input,
are now used for final layer prediction.

As the models exhibited similar trends in the
embedding layer, we report a singular figure (Fig-
ure 7). A side effect of removing the NSP layer, we
observe a large gradient flow in the segment(ation)
embeddings, as the model learned sentence segmen-
tation between the two text-pairs. This may explain
the capacity of the network to better differentiate
between the text-pairs during classification. The
magnitude of this segmentation gradient is larger in
both TEconv models than the TE model (Figure 5),
allowing for better modeling of pair semantics.

Encoder comparisons: efficiency and effective-
ness Earlier, we hypothesize that using convolu-
tional components should not hinder training speed.
From Table 3, we found that TEconv being a larger
model, sharing the same number of layers as the
original TE model, increases the training time by
13.8%, while the TEaux with only three layers in-
creases only by 7.44% in training time. TEaux of-
fers a trade-off between effectiveness and training
time.

Our results indicate that both models are signifi-
cantly better than the TE baseline in most settings.
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Dataset Sentence A Sentence B Gold Label Baseline Prediction

StackOverflow
why does this setTimeout() call work in the console but not
as a greasemonkey script?

setinterval() and .click() in
a Greasemonkey script

Duplicate Not Duplicate

how to resolve Error: [$rootScope:inprog]
http://errors.angularjs.org/1.5.8/$rootScope/inprog?p0=
%24digest in dhtmlxTree

php parse/syntax errors;
and how to solve them?

Not Duplicate Duplicate

MedNLI
In the ED, initial VS were: 8 98 64 131/113 in the ED initial respira-

tory rate was low
Entailment Not Entailment

Received ASA 325mg and Nitro 0.4mg x3. The patient has not had
any vasodilator drugs.

Not Entailment Entailment

SNLI
A young child dressed in a scarf, hat, jacket, gloves, pants,
and boots, outside playing in the snow.

A child plays with a sled
in the snow while dressed
warmly.

Neutral Contradiction

A girl with a blue shirt and a girl with a striped shirt stand
next to a girl with a green shirt sitting in a chair.

Two girls are standing
next to a girl who is sit-
ting.

Entailment Contradiction

Table 2: Examples where shallow features lead to the correct prediction by our models.

The TEaux model propagates higher level gradients
to lower layers, takes less time to train, and is more
consistent between runs as it has fewer parameters.
However, the TEconv model can achieve strong per-
formance, provided the dataset is large enough.

We conduct additional experiments to verify if
(1) convolutional components in the TEconv net-
work improve effectiveness; and, (2) including
more layer representations (shallow and deep) to
the decoder shows improvement over the baseline.
These results are shown in Table 4. We conclude
that the decoders can better use the encoder’s fea-
tures than a linear decoder from the frozen encoder
experiments. Moreover, by comparing TEconv with
and without convolutional sub-networks, we see
that convolutional components allow for better uti-
lization of the additional features in the encoder for
data-rich tasks as accuracy and F1-score increases
for those tasks. Residual connections and addi-
tional features (summation of hidden states+k-max
pooling-convolution) benefit medical tasks, giving
an average 0.05 (absolute) boost in F1-score for
each task, meaning that additional shallow features
still help smaller datasets. However, we find that re-
moving all additional parameters and utilizing only
additional features provides an increase in effective-
ness over the baseline. Our results are consistent
with (Dong et al., 2021) which shows that skip

Model Total Training
Time (hours) % Slower

TE 16.75 –
TEconv 19.50 13.8
TEaux 18.25 7.44

Table 3: Comparison of average training time in hours
between the models over a total of 15 epochs on the
Stack Overflow dataset.

Model A F1

TEfrozen 0.583 0.505
TEconv

frozen 0.608 0.571
TEaux

frozen 0.584 0.544

TEconv w/o Residual Block (no additional parameters) 0.700 0.668
TEconv 0.711 0.636
TE 0.676 0.544

Table 4: Ablation comparisons between transformer en-
coders. Metrics are averaged over all tasks. Experi-
ments encoder layers are frozen during training as de-
noted by frozen. We use mean pooling for the tasks as
the classification feature token is not fine-tuned. We
also include a baseline TEconv model where additional
parameters (such as convolution) are removed. The
original splits for the MediQA datasets are used for
these experiments and as such do not relate to experi-
ments in Table 1.

connections are important for transformer model
effectiveness. Our models exploit skip connections
to combine shallow and deep representations.

Overall, we find that utilizing more layers in
the TE architecture, and propagating gradient to
multiple network layers allows for increased ef-
fectiveness and generalizability through regulariza-
tion (Szegedy et al., 2015), especially on smaller
specialized medical datasets.

7 Conclusions

We investigate whether using shallow hidden
representations—which encode syntactic and struc-
tural information in the transformer encoder
architecture—aids text-pair classification in the
medical, software engineering and open-domains.
To exploit these representations, we use deep con-
volutional neural networks as low-parameter net-
works to increase gradient propagation to the earlier
layers of the network with a minimal decrease in
efficiency. We find that including these representa-
tions, even as a simple summation over all hidden
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states, leads to increased system effectiveness. Vali-
dating if this holds for other variants of transformer
encoder architecture is a suitable avenue for future
research.
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Abstract
We investigate the efficiency of two very differ-
ent spoken term detection approaches for tran-
scription when the available data is insufficient
to train a robust speech recognition system.
This work is grounded in a very low-resource
language documentation scenario where only
a few minutes of recording have been tran-
scribed for a given language so far. Experi-
ments on two oral languages show that a pre-
trained universal phone recognizer, fine-tuned
with only a few minutes of target language
speech, can be used for spoken term detec-
tion through searches in phone confusion net-
works with a lexicon expressed as a finite
state automaton. Experimental results show
that a phone recognition based approach pro-
vides better overall performances than Dy-
namic Time Warping when working with clean
data, and highlight the benefits of each meth-
ods for two types of speech corpus.

1 Introduction

Efforts are made across Australia to preserve, doc-
ument and revitalize Aboriginal languages. These
languages exist primarily in spoken form, and even
if there often is an official orthography available, it
is not widely used by local people. Making record-
ings of speakers has been a widespread practice
for documenting traditional knowledge. However,
such recordings are often not transcribed, making
them hard to access.

Manual transcription is time consuming and
is often described as a bottleneck (Brinckmann,
2009). While automatic speech recognition (ASR)
has seen great improvements in recent years (Povey
et al., 2011; Watanabe et al., 2018), it relies on a
large amount of annotated data. Attempts to build
ASR systems for low-resource languages end up
with high word error rate or single-speaker models
making them of limited use in Indigenous contexts
(Gupta and Boulianne, 2020a,b).

Such methods assume that everything should be
transcribed. Bird (2020) describes a sparse tran-
scription model where we only transcribe the words
we can confidently recognize, using word-spotting,
while leaving the transcription of more difficult sec-
tions for later, perhaps when a speaker is available
(Bird, 2020). Based on this model, Le Ferrand et al.
(2020) proposed a workflow which combines spo-
ken term detection and a human-in-the-loop to sup-
port transcription in under-resourced settings. Such
a workflow avoids the use of a language model
which requires too much textual data, data that
we cannot find in most Aboriginal contexts, and
which only needs a few spoken terms to be anno-
tated. While they show through their simulation the
capability of iterative transcription in remote com-
munities, the precision of their method depends on
the quality of the spoken queries, and the density
of the resulting transcription is limited by the size
of the lexicon.

Automatic phone recognition has seen progress
with minimal data (Gupta and Boulianne, 2020b;
Li et al., 2020). While Bird (2020) argues that pho-
netic transcriptions do not stand in for the speech
data and cannot be segmented to generate the re-
quired higher-level word units, we can nevertheless
view phone transcriptions as a speech encoding,
retaining our commitment to the sparse transcrip-
tion model. Such an approach has an advantage
over traditional query-by-example methods in that
a simple word list can be used instead of a spoken
lexicon which can be challenging to collect. In this
paper we show how this can be done, and compare
it with dynamic time warping (DTW) (Sakoe and
Chiba, 1978) commonly used for keyword spot-
ting for Indigenous languages. We consider both
methods as applied to two very low-resource lan-
guages, Kunwinjku (gup) spoken in the far north
of Australia and Mboshi (mdw) spoken in Congo
Brazzaville.
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2 Background

Traditional ASR systems are not well suited to Abo-
riginal languages. The lack of data for such lan-
guages does not allow us to train an acoustic model
or a language model. Additionally, the type of data
usually recorded is often spontaneous and noisy
which makes it difficult to transcribe, regardless of
the amount of annotated data available.

Bird (2020) describes the sparse transcription
model, which combines spoken term detection with
a human-in-the-loop, in an iterative process. Using
spoken term detection as a transcription method
allows us to avoid traditional components of an
ASR system, specifically the language model, to
focus only on the recognition of isolated words.

Traditional Spoken Term Detection systems rely
on text-based search in lattices extracted from ASR
systems (Lleida et al., 2019; Saraclar and Sproat,
2004). Attempts to train ASR systems in low-
resource contexts have so far provided poor results
for single speaker systems (Gupta and Boulianne,
2020a,b). This makes traditional spoken term detec-
tion approaches questionable in very low-resource
settings. A few papers linked to the Babel Project
have explored lattice search using ASR systems
trained in low-resource settings (Gales et al., 2014;
Rosenberg et al., 2017). However, they work with
much larger data collections than what is available
in Indigenous contexts.

Query-by-Example methods have been preferred
in very low-resource contexts since they only rely
on acoustic comparison between spoken queries
and utterances. Le Ferrand et al. (2020) explore
feature representation using DTW in an iterative
pipeline following the sparse transcription model
(Bird, 2020), and have been able to transcribe up to
42% of a lexicon in their speech collections. This
method, however, has shown limitations in terms
of robustness in the face of speaker variability. Re-
search around speech features for spoken term de-
tection has explored the use of bottleneck features,
or the hidden representation of an auto-encoder
(Menon et al., 2019; Kamper et al., 2015, 2020).
Such research highlights the benefits of multilin-
gual approaches for spoken term detection when
transcribed data are limited in the target language.
Others have exploited neural approaches to train
word classifiers from word pairs using a Siamese
loss (Settle and Livescu, 2016; Settle et al., 2017),
however pairs of words are required, limiting the
selection to words that can be searched.

Query-by-example relies on a spoken lexicon
and, by extension, a comparison between two
acoustic vectors. A difference of speakers or
recording channel between the query term and the
speech collection has an influence on the likeli-
hood of a given term to be retrieved. Moreover,
a spoken lexicon is not simple to gather and this
therefore limits the amount of terms we can re-
trieve. Using a lexicon made of terms recorded in
isolation for spoken term detection purposes will
lead to poor precision. Another solution would
be to manually extract the terms of the lexicon
from a speech collection which is time-consuming.
Phone recognizers, like ASR systems, also need a
few hours of annotated speech to provide accept-
able performance (Gupta and Boulianne, 2020b;
Adams et al., 2018). However, recent work has
shown how multilingual phone recognizers can be
fine-tuned with minimal data to work on a new lan-
guage (Li et al., 2020). Raw phone transcriptions
are hard to obtain as they require the skills of a
trained linguist, and they cannot help directly for
retrieving higher level-units (Bird, 2020). However,
the orthography of most Indigenous languages is
based on their phonology and there is usually a
simple mapping from graphemes to phonemes can
be obtained to train a phone recognizer, even with
a shallow knowledge of the phonology. A spoken
term detection method based on a phone recog-
nizer could allow us to rely only on written queries
following a traditional lattice-search method.

3 Methods

We begin with a lexicon of size s consisting of au-
dio clips of spoken words, along with orthographic
transcriptions, plus a speech collection in which
more instances of those words may be found.

Two spoken term detection approaches, involv-
ing a multilingual component, are investigated here:
(a) a baseline method based on DTW applied on
multilingual BottleNeck Features (mBNF); and
(b) a method based on a textual search in phone con-
fusion networks extracted from a universal phone
recognizer (P2W).

3.1 Baseline: Sparse Transcription using
DTW

We first extract acoustic features from both the cor-
pora and lexicons. Based on general performance
scores reported in the literature, and in order to
compare our method with another multilingual ap-
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proach, we have chosen multilingual bottleneck
features. These are extracted from a model trained
on the Babel corpus and consist of 80 dimension
acoustic vectors. They have been extracted with
the Shennong library.1 We slide each term of the
lexicon along the utterances of the corpus with a
step size of 30 milliseconds. We then select the
best matches for each utterance-word pair based
on DTW distance and retain all matches above a
threshold m for evaluation.

3.2 Sparse Transcription using Phone
Recognition (P2W)

Li et al. (2020) introduced Allosaurus, a univer-
sal phone recognition system which combines a
language independent encoder and phone predic-
tor, and a language dependent allophone layer
with a loss function, associated with each lan-
guage (Fig. 1). Allosaurus models are trained using
standard phonetic transcriptions and the allovera
database (Mortensen et al., 2020), a multilingual
allophone database that can be used to map al-
lophones to phonemes. The model first encodes
speech with a standard ASR encoder which com-
putes the universal phone distribution. Then an
allophone layer is initialized with the allophone
matrix and maps the universal phone distribution
into the phoneme distribution for the given target
language. The resulting model can be fine-tuned
and applied to unseen languages.

Figure 1: Allosaurus model (Li et al., 2020)

In the current context, since we only have an or-
thographic transcription for Kunwinjku, we translit-
erate it into IPA with the mapping shown in Table 1.
The transcription contains some English words
which will be mapped as if they were Kunwinjku
words (e.g., school is written /sPkool/ instead of

1https://docs.cognitive-ml.fr/shennong/

graphs a b d h e i ch y o k dj s r rr
phones A b d P E i S j O k é s õ r
graphs ng rd rl nj rn u f l m n w p t
phones N ã í ñ ï u f l m n w p t

Table 1: Grapheme to phoneme mapping for Kunwin-
jku

/skUl/). For Mboshi, the orthographic transcription
already mostly matches the corresponding phonetic
transcription.2

We fine-tuned the original pretrained model with
the training and validation subsets described in Sec-
tion 4 following the mapping described above, re-
sulting in one new phone recognition model per
language. We used the resulting models to automat-
ically extract phones in confusion networks from
the validation and test sets of the two languages
(Mboshi and Kunwinjku) (Fig. 3).

The graph extracted is a confusion network
(confnet) and consists of a size s sequence of
phones and the top k likely alternatives for each
phone (see Fig. 3). For each phone in the graph
a probability score between 0 and 1 is assigned.
We also map the lexicons into phones and convert
them into a finite state automaton (FSA) in which
each final state corresponds to the end of a given
word (Fig.2). We explore, in the confusion net-
works related to our collection, every path which
corresponds to a valid transition in the FSA and
has a probability strictly greater than zero. If a path
reaches a terminal state in the FSA, we extract the
word and a score corresponding to the mean of the
accumulated likelihood scores. Like the baseline
with DTW, we then select the best match for each
pair utterance/word pairs based on the likelihood
score and keep for evaluation the matches above a
threshold n. For both systems, we do not keep for
evaluation the pairs which correspond to the query
instances used to build the lexicons.

4 Data

We are using a corpus of spontaneous speech in
Kunwinjku built from several sources. The train-
ing, validation and test set are described in Table
2. The training and validation sets are built from
transcribed recordings made for language descrip-

2The tones are marked in the orthographic transcription
but this feature is not taken into account in the Allosaurus
model. We thus decided to treat the orthographic transcrip-
tion as a phonetic transcription so the accentuated vowels are
considered as new phones.
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Figure 2: Example of lexicon converted into a FSA

Figure 3: Example of search in a graph confusion net-
work

tion purposes around language and emotion. They
also contain some recording of guided tours of an
Aboriginal town. The test set contains exclusively
guided tour recordings. The orthographic transcrip-
tion has been force-aligned using the MAUS forced
aligner (Kisler et al., 2017). The train and valida-
tion sets contain the same 5 speakers and the test
set has a non-overlapping set of 5 speakers.

We are also using a corpus of Mboshi speech
which consists of 4.5 hours of speech elicited from
text with orthographic transcription and a forced
alignment at the word level (Godard et al., 2017).
Training, validation and test sets have been ex-
tracted from the corpus and are described in Table
2. The same three speakers are represented among
the three partitions.

The lexicon queries (for spoken term detection)
are made of 100 words for Mboshi and 60 words
for Kunwinjku. We randomly selected in the test
set words which occur at least 3 times in the cor-
responding corpus. For each word, we manually
selected examples clearly pronounced, respecting
the speaker distribution of the test set (Table 3 and
4), and clipped them out.

Partitions train valid test
Kunwinjku 35min45 7min39 19min43
Mboshi 21min10 10min03 3h56min

Table 2: Partition duration

Speaker RB TG GN SG MM
Distribution 10% 25% 15% 38% 12%

Table 3: Speaker distribution across Kunwinjku lexicon

Speaker AB KO MA
Distribution 63% 33% 4%

Table 4: Speaker distribution across Mboshi lexicon

5 Results

5.1 Phone Error Rate (PER)

We first evaluate the PER for both languages on
the validation set. For Kunwinjku the PER started
at 55.45%, and we obtained 38.82% after the sys-
tem early stopped at the 24th epoch. For Mboshi
the PER started at 59% and reached 38.72% at the
29th epoch. Although the PER is low consider-
ing the small amount of data used for fine-tuning
Allosaurus, we would expect a bigger difference
between Kunwinjku and Mboshi considering that
Mboshi is read speech without foreign words and
Kunwinjku is spontaneous speech containing En-
glish words. To estimate the performances for each
language, we computed the PER on the test set
between the top 1 phones generated by Allosaurus
and the gold standard. For Kunwinjku the PER is
at 39% and for Mboshi at 44%.

5.2 System performances

We evaluate the proposed methods using precision,
recall and F-score.

We provide for each language the scores based
on a threshold that is optimized on the respective
validation sets. For the P2W method, the optimized
threshold is set at 0.77 for Kunwinjku and 0.631
for Mboshi. For the DTW baseline, it is set at 0.217
for Kunwinjku and 0.174 for Mboshi. The results
are detailed in Table 5. In Mboshi, the method out-
performs the baseline with DTW with recall and
precision. In Kunwinjku, the method does not out-
perform the baseline in terms of F-scores. We can
see that while the baseline brings more candidates
than P2W, our method is more precise. While it is
clear that a phone recognition based method pro-
vides better overall performance on clean speech,
the gap between the F-scores of each method in
Kunwinjku is small which can make them both
beneficial.

The Kunwinjku corpus contains spontaneous
speech. We can observe elision phenomenon and
fast speech which are not well supported by an ap-
proach based on recognition of canonical, lexical
phone sequences. Figures 4 and 5 show that, while
our approach seems to be more consistent across
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Figure 4: F-scores for Mboshi with variable thresholds
on validation set

Figure 5: F-scores for Kunwinjku with variable thresh-
olds on the validation set

recall precision F-score
DTW mb 14.55% 20.46% 17.01%
P2W mb 22.61% 45.97% 30.31%
DTW kun 42.09% 22.81% 29.59%
P2W kun 17.41% 62.50% 27.23%

Table 5: Performance of spoken term detection on the
test set with the optimized threshold

thresholds, it is less efficient than DTW for noisy
and spontaneous speech corpora.

We present in Table 6 the top 5 false positives
across methods and languages. We could only re-
port the top 4 for P2W in Kunwinjku since most
of the errors were isolated cases. We can see for
P2W that the errors are made between very similar
words. For Mboshi, the top 5 only includes tonal
differences between the query and the hit. For
Kunwinjku, the errors are made between similar
words, some of which are morphologically related

(balanda (man), balandaken (of the man); karrire
(we-INCL go), ngarrire (we-EXCL go)). For DTW,
the errors are not as consistent and the hits seem to
only match subparts of the query terms (wa, wáre;
marnbolh, bonj).

5.3 Speaker analysis

Le Ferrand et al. (2020) pointed out the limitation
of their method in terms of cross speaker spoken
term detection. To compare the two approaches on
this aspect, we analyze each true positive that is out-
put by each system: we check if the word matched
is pronounced by a same or different speaker that
the query term. Even if we only use the written
forms of the queries for P2W, we also make the
same analysis.

Figure 6: Proportion of same-speaker/different-speaker
retrieval in Kunwinjku

Figure 7: Proportion of same-speaker/different-speaker
retrieval in Mboshi

Figures 6 and 7 present the proportion of spo-
ken terms retrieved from same-speaker or different-
speaker For a fair comparison, we also compute the
distribution of same/different speaker between the
lexicons and all the words to be retrieved in the cor-
pora (reference). We can see that P2W method
follows the general distribution in the corpora
while the baseline DTW retrieves mostly terms
pronounced by the same speaker.
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Mboshi P2W Kunwinjku P2W Mboshi DTW Kunwinjku DTW
Query Hit Query Hit Query Hit Query Hit
ádzá ádza balanda balandaken abvúa wa munguyh bonj
ádzá adzá birrimarnbom birrimanbun mwána wa kahdi konhda
ngala ngalá mani yiman mvúá wa kunak konhda
ngaa ngáa karrire ngarrire wáre wa kunred konhda
okándá řkándá ngaa ngá marnbolh bonj

Table 6: Top 5 false positives

6 Combining the methods

We mentioned in Section 2 that DTW and P2W
each have their own strengths. As we know, DTW
will cope more easily with spontaneous speech and
co-articulation effects such as assimilation and eli-
sion. Phone recognition allows us to avoid gather-
ing spoken queries and retrieving terms with exact
matching between written forms. To highlight the
complementarity of the methods, we analyse the
intersection of their true positives in Figure 8. We
show that across both corpora the intersection of
the true positives is small, and so combining the
two methods can help us increase the coverage of
the transcription to reach up to 49.99% for Kun-
winjku and 32.16% for Mboshi.

Figure 8: Relative coverage of the combined methods

We analysed the most common terms retrieved
by DTW which have been ignored by P2W. For
Kunwinjku, the glottal stop and doubled conso-
nant are the phones the least properly recognized
(wanjh written wanj kunwardde written kunwarde
for example). More generally, since the data used
in Kunwinjku is spontaneous speech, most of the
missed hits by P2W are due to highly mistaken
phone transcriptions by allosaurus. For Mboshi, be-
yond the main easily-confusable phones (o / ω, e /
ε for instance) the main missed hits are due to tones
or long vowels not being correctly recognized.

The baseline provides a match for every utter-
ance/query pair if no threshold is applied. However,
since P2W is restricted by the phones output by the

phone recognizer, we have a limited amount of
candidates regardless of the threshold. As men-
tioned before, this has the advantage of being more
precise, but can easily miss a match if the phone
lattices contain many mistakes. In view of this,
we combine the two methods as follows. For each
utterance/query pair brought by P2W, we first keep
for evaluation the candidates which have a score
greater than the P2W threshold. Then we send to
evaluation every pair having a distance less than
the DTW threshold. We provide in Table 7 the re-
sults for the same optimized thresholds mentioned
before.

recall precision F-score
comb mb 24.89% 45.54% 32.19%
P2W mb 22.61% 45.97% 30.31%
comb kun 35.76% 31.48% 33.48%
P2W kun 17.41% 62.50% 27.23%

Table 7: Performance of the combined methods

The described way of combining the methods
outperforms both P2W and DTW approaches in
terms of F-score. For Mboshi, we can observe a
small increase of the recall with a precision barely
affected. For Kunwinjku, the results are less clear.
While the F-score outperforms both the baseline
and P2W, combining the methods double the recall
but decreases by half the precision.

7 Conclusion

This paper compares two methods of spoken term
detection, one based on DTW with bottleneck fea-
tures, and one based on on phone recognition.
Both methods have been applied on two very low-
resource languages, namely, a corpus in Mboshi
recorded in a controlled environment, and a corpus
of spontaneous speech in Kunwinjku recorded in
remote communities. Experimental results shown
that a few minutes of transcribed speech can be
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used to fine-tune a universal phone recognizer.
Then searching terms in a confusion network with
a lexicon expressed as a FSA outperforms the base-
line for Mboshi but not for Kunwinjku.

A text-based approach has the advantage over
traditional Query-by-example that a set of written
queries is easier to gather than spoken queries. Fur-
ther analysis has shown that the proposed phone
recognition approach is more robust to speaker vari-
ability and tends to be more accurate than DTW
overall. However, the baseline seems to have a
better coverage over the corpora and to be more
suitable with noisy data.

One method relies on canonical orthography
while the other relies on acoustic comparison. Both
methods have their own benefits depending on the
type of data they are applied to. Experimental re-
sults have shown that it is possible to take advan-
tage of both methods to increase the overall recall
while maintaining precision at an acceptable rate.
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Abstract

Summarisation of reviews aims at compress-
ing opinions expressed in multiple review doc-
uments into a concise form while still cover-
ing the key opinions. Despite the advancement
in summarisation models, evaluation metrics
for opinionated text summaries lag behind and
still rely on lexical-matching metrics such as
ROUGE. In this paper, we propose using the
question-answering(QA) approach to evaluate
summaries of opinions in reviews. We pro-
pose to identify opinion-bearing text spans in
the reference summary to generate QA pairs
so as to capture salient opinions. A QA
model is then employed to probe the candidate
summary to evaluate information overlap be-
tween the candidate and reference summaries.
We show that our metric RunQA, Review
Summary Evaluation via Question Answering,
correlates well with human judgments in terms
of coverage and focus of information.

1 Introduction

Opinion summarisation takes input documents like
online reviews or social media posts where users
express their opinions on topics and condense them
into a single piece of text. The summary should
reflect the core opinions expressed in the source
documents. Recent studies in opinion summari-
sation have shown an advancement moving from
extractive (Meng et al., 2012; Ku et al., 2006; i.a),
i.e. copying sections from the original reviews to
produce a summary, to abstractive (Chu and Liu,
2019; Bražinskas et al., 2020a; Bražinskas et al.,
2020b; i.a), i.e. generating new phrases that reflect
the information covered in the original text.

Despite the advancement in summarisation mod-
els, evaluation metrics for opinionated text sum-
maries lag behind. For evaluation of review sum-
maries, traditional token-matching ROUGE (Lin,
2004) is still widely used, supplemented with hu-

man evaluation on the relative ranking of system-
generated summaries in terms of quality dimen-
sions such as Fluency, Coherence, Non-redundancy,
Informativeness, and Sentiment (Chu and Liu,
2019; Bražinskas et al., 2020a; Bražinskas et al.,
2020b). It is well understood that ROUGE cannot
capture the same meaning expressed in different
token sequences.

Neural model-based metrics have been proposed
for general text summarisation evaluation. Espe-
cially QAEval (Deutsch et al., 2021) has been pro-
posed for evaluating the information quality of ab-
stractive summaries with respect to the reference
summaries. A key step for the success of QAEval
for summarisation evaluation is extracting answers
and generating questions covering a significant
amount of important Summarisation Content Units
(SCUs). Generally, noun phrases(NP) and named
entities(NER) are used to generate question-answer
pairs in QA models (Durmus et al., 2020; Wang
et al., 2020; Deutsch et al., 2021), but their appli-
cability for review summary evaluation is yet to be
examined.

In this paper, we propose to evaluate review sum-
maries with question answering (QA) based on
neural models, with a focus on evaluating the in-
formation quality of review summaries. Modern
abstractive summarisation systems can generate
sentences of high linguistic quality – grammati-
cally correct, easy to read and understand– but it is
more important to evaluate the information quality
of summaries. Specifically system summaries of
high quality information should express opinions
consistent with those in the reference summary.

We propose to evaluate the information quality
of review summaries, in terms of coverage(recall)
and focus(precision) (Koto et al., 2020), where cov-
erage is the amount (proportion) of salient infor-
mation of the reference summary that the system
summary contains, and focus is the amount (propor-
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tion) of salient information in the system summary.
To improve the QA framework for more effective
review summary evaluation, we propose to identify
opinion-bearing text spans to generate QA pairs
rather than relying on NPs and NERs. In addition
to the evaluation of the information quality of sum-
maries, we further propose evaluating the robust-
ness of evaluation metrics for ranking summaries
through an adversarial task.

Our evaluation metric RunQA, namely Review
Summaries Evaluation via Question Answering,
was evaluated against QAEval and other met-
rics on an Amazon review summarisation
dataset (Bražinskas et al., 2020b) We found that
RunQA significantly outperforms QAEval and
other metrics for evaluating the information qual-
ity of summaries, especially in terms of precision.
We also found that RunQA is the most robust for
ranking summaries.

2 Related Work

We first discuss automatic metrics for general text
summarisation evaluation and then especially dis-
cuss the QA-based metrics.

2.1 Evaluation Metrics for Text
Summarisation

Automatic metrics for summarisation evaluation
can be broadly divided into three groups – tradi-
tional token matching-based metrics, embedding-
based metrics and model-based metrics.
Token matching-based metrics: When evalu-
ating the performance of a summarisation sys-
tem, researchers introduced metrics by compar-
ing n-gram token matching such as ROUGE (Lin,
2004), BLEU (Papineni et al., 2002) and ME-
TEOR (Banerjee and Lavie, 2005) over a decade
ago. Owing to simplicity and ease of use, ROUGE
is one of the most widely used automatic metrics.
It is designed to capture the similarity between text
sequences based on lexical overlaps.
Embedding-based metrics: The significant im-
provement in the summarisation domain moving
from extractive to abstractive makes using lexi-
cal overlap metrics for evaluation inadequate. In
abstractive summarisation, the summary does not
necessarily use the exact word when contextual
embeddings like BERT (Devlin et al., 2019) and
ELMo (Peters et al., 2018) are used. ROUGE be-
comes less suitable in this setting, as it performs a
surface-level comparison between texts, and it fails

to compare words that express the same meaning
expressed in different forms.

To overcome the problem of exact word match-
ing, researchers introduced metrics using contex-
tual embeddings, such as BERTScore (Zhang et al.,
2019) and MoverScore (Zhao et al., 2019). Both of
these metrics have proven to better correlate with
human judgments than ROUGE.

Although the embedding-based metrics over-
come problems with exact word matching, they
are still comparing two pieces of text by capturing
context similarity, but not evaluating whether they
express the same information (Deutsch and Roth,
2020).

ROUGE is still the most widely used and the
default metric for evaluating opinion summarisa-
tion. In recent opinion summarisation papers (Chu
and Liu, 2019; Bražinskas et al., 2020a; Bražinskas
et al., 2020b), the ROUGE family is still the only
automatic metric used for evaluating their systems.

Researchers have shown ROUGE is weakly cor-
related with human judgments (Novikova et al.,
2017), and it is not suitable to be used for opinion
summarisation evaluation (Tay et al., 2019) or ab-
stractive summarisation (Ng and Abrecht, 2015).
It is calculated based on token overlap rather than
looking at whether summaries express the same
opinion. This makes ROUGE not an ideal metric
for evaluating opinionated text summaries.

Both the token overlap-based and embedding-
based metrics have the drawback of weakly penal-
ising information or opinion inconsistency (Tay,
2019). For example, for documents expressing op-
posite opinions like ‘I like sushi’ and ‘I hate sushi’.
ROUGE will penalise it weakly by putting equal
weight on each token. Whereas embedding-based
metrics will treat ‘like’ and ‘hate’ similarly because
of the similar context.

Model-based metrics: Recent studies have intro-
duced different model-based metrics. For example,
SUPERT (Gao et al., 2020) and LS-Score (Wu
et al., 2020) target to evaluate text summarisation
without references. SUPERT achieved this by gen-
erating pseudo references using the top sentences in
the source documents, and LS-Score by generating
different negative samples and applying unsuper-
vised contrastive learning to learn the metric.

Model-based metrics include QA-based metrics.
Following that, we go into metrics based on QA
models in further depth.
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2.2 QA-based Metrics

There are two types of QA-based metrics target-
ing evaluation in different dimensions. One type
is reference-free models such as FEQA (Durmus
et al., 2020) and QAGS (Wang et al., 2020), where
questions are generated using the candidate sum-
mary, and asked against the source document to
measure the faithfulness of the candidate summary.
The other type is reference-based models such as
QAEval (Deutsch et al., 2021), where questions are
generated using a reference summary and asked
against the candidate summary to evaluate content
and information overlap between the summaries.

QAEval is proven to generate question-answer
pairs that cover a significant amount of informa-
tion expressed in summaries. It also correlates well
with human judgments when used as a reference-
based metric. Our work builds on QAEval for opin-
ion summarisation evaluation. The original QAE-
val model generates questions by extracting noun
phrases only. In this work, we use a different an-
swer selection strategy to capture and evaluate the
information and opinions expressed in summaries.

3 RunQA: Review Summary Evaluation
via Question Answering

Reference 
Summaries

Extract

Question 
Generation 

Model 
(BART 
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System 
Generated 
Summary

Ask

Answer 
Generation 

Model 
(ELECTRA-Large 

Fine-tuned on 
SQuAD 2.0)

Compare 
Answers 
(F1/LERC)  

Aggregate 
Score 

(Average)

Gold 
Answers 

(ADJ+ADV+VB
+NSUBJ+DOBJ

+NP )

Generated 
Questions

RunQA 
Score

Generated 
Answers

Figure 1: The RunQA model architecture. The answer
selection strategy changed from noun phrases(NP) only
to the combination of adjectives, adverbs, verbs with
their subject child and object child and NP.

The overall architecture of the RunQA model
is shown in Figure 1. Like the original model, it
consists of a question generation model using a
pre-trained BART language model (Lewis et al.,
2020) and fine-tuned on QA data provided by Dem-
szky et al. (2018). QAEval uses a pre-trained
ELECTRA-Large language model (Clark et al.,

2020) and fine-tuned it on the SQuAD 2.0 (Ra-
jpurkar et al., 2018) dataset for question answering.

RunQA has several key differences from QAE-
val (Deutsch et al., 2021). We modified the an-
swer selection strategy to make it better suited for
opinion summarisation evaluation. We also use
different variants of answer verification strategies.

3.1 Answer Selection
In general text summarisation, the datasets used
are mostly articles from the news domain, like
CNN/DailyMail (Nallapati et al., 2016) and News-
room (Grusky et al., 2018). Where these arti-
cles contain a significant number of named enti-
ties(NER) and noun phrases(NP). Different from
general text summarisation datasets where the in-
formation is contributed heavily by NERs and NPs.
For opinion summarisation, there is a limited num-
ber of NERs and NPs in reviews. This suggests
using NPs alone may not be sufficient to capture
opinionated information.

Deutsch and Roth (2020) showed that in addition
to the NP, information is expressed in the combi-
nation of the verb and its subject child (NSUBJ)
and object child (DOBJ). Subrahmanian and Re-
forgiato (2008) suggested that opinions can also
be captured by the combination of adjectives with
verbs and adverbs. Our answer selection strategy
therefore includes opinion-bearing text spans – ad-
jectives, adverbs, and verbs with their object child
and subject child, in addition to NPs. Our experi-
ments evaluating (Section 5) the quality of answers
showed that our answer selection strategy can ef-
fectively capture the Summarisation Content Units
(SCUs) (Nenkova and Passonneau, 2004) in ref-
erence summaries. Our further evaluation of the
QA pairs shows that the generated QA pairs are
of high quality, covering a significant amount of
information expressed in SCUs.

3.2 Answer Verification
Previous QA methods (Durmus et al., 2020; Wang
et al., 2020; Deutsch et al., 2021) reported the short-
coming of using the F1 score for answer verifica-
tion. F1 score is calculated by using an exact match-
ing of tokens between the answer spans. It works
well in an extractive setting but not necessarily in
an abstractive scenario. It has the risk of incorrectly
penalising a correct answer due to token mismatch.

To overcome the shortcoming of using the F1

score for answer verification. We propose to lever-
age LERC (Chen et al., 2020) to verify answers. It
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is a learned evaluation metric for reading compre-
hension to verify the correctness of answers. It was
shown to better correlate with human judgements
for answer verification by using a more flexible way
to evaluate answers. It is achieved by not only com-
paring the answer spans when generating a score,
but also the provided summary and the question.

4 Dataset and Baselines

We conducted experiments to evaluate the QA
model and benchmark RunQA against QAEval and
other metrics. The dataset we use in our experi-
ments is from Bražinskas et al. (2020b). It was
obtained from Amazon product reviews, where 60
products from 4 different categories (15 for each
category) were randomly selected. For each prod-
uct there are 8 source reviews, 1 system generated
summary using the Copycat model (Bražinskas
et al., 2020b), and 3 reference summaries obtained
from Amazon Mechanical Turk 1.

The summary of the dataset is in Table 1. The
average number of sentences and words in the ref-
erence summaries and reviews is similar. This is
because the annotators were instructed to generate
summaries of a similar length as the reviews. The
candidate summaries have a relatively smaller num-
ber of words and sentences generated compared to
them.

Document Avg. No.
Words

Avg. No.
Sents

Reviews 49.58 3.74
Candidates 34.02 3.13
References 54.54 4.07

Table 1: Statistics of the Amazon review dataset.

Baseline metrics include the lexical overlap-
based ROUGE family of metrics (Lin, 2004),
embedding-based metrics BERTScore (Zhang
et al., 2019) and MoverScore (Zhao et al., 2019),
as well as the QA model-based metric QAE-
val (Deutsch et al., 2021).

5 Evaluation of the QA Model

We conducted experiments to evaluate the effec-
tiveness of our answer selection strategy and the
quality of the generated question-answer pairs. To
ensure product diversity, we randomly selected two
products from each product category. One of the

1https://www.mturk.com/.

authors manually annotated the SCUs using the
reference summaries following the guidelines and
using the annotation tool provided by the Pyramid
method (Nenkova and Passonneau, 2004) 2.
Token categories in SCUs: The same author ap-
plied spaCy3 to tag tokens in each SCU as cate-
gories (e.g. Noun, Verb), and check whether the
token is part of a noun phrase(NP). This step aims
to examine whether tokens that express informa-
tion can be successfully captured using NPs only.
We put words that do not express information into
a separate category and excluded them from our
analysis.

Figure 2: Nouns are a great contributor to NP. There are
a significant number of verbs, adverbs, and adjectives
presented in the SCUs but not captured by NPs. The
number of NSUBJs and DOBJs is not significant due
to the structure of SCUs. A limited number of NER
suggest that using NP together with NER is not suffi-
cient for review summaries evaluation.

The final result can be found in Figure 2. Not
surprisingly, nouns are a great contributor to NPs.
Note that there are a significant number of verbs,
adverbs, and adjectives presented in the SCUs but
not in the NPs. However, since an SCU is similar
to a clause but not a full sentence, it is common for
an SCU to not contain the subject child (NSUBJ) or
the object child (DOBJ) of a verb. The very limited
number of proper nouns (NERs) suggests that they
do not capture significant information in review
summaries. Figure 2 clearly shows that NPs alone
cannot capture information in summaries and jus-
tifies our proposed approach of selecting answers

2http://www1.cs.columbia.edu/˜ani/
DUC2005/AnnotationGuide.htm.

3https://spacy.io/.
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based on adjectives, adverbs, and verbs with their
subject and objective children as well.
Quality of Generated Question-Answer Pairs:
A boxplot of the number of question-answer pairs
generated using different answer selection strate-
gies can be found in Figure 3. It is not surpris-
ing that our answer selection strategy generates
the largest number of QA pairs since we select
text spans based on more diverse categories, while
using other selection strategies alone generates a
limited number of QA pairs. The number of QA
pairs generated using NPs only is rather limited,
and NERs with NPs do not generate more either,
which again suggests that there is a limited number
of NERs in review summaries.
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Figure 3: The number of QA pairs generated using
different answer selection strategies. Abbreviations:
“np” for “noun phrase”, “ner np” for “NER and noun
phrase”, “v n d” for “verb with object and subject
child”, “a a v n d” for “adjective, adverb, verb with
object and subject child”, and “a a v n d np” for “ad-
jective, adverb, verb with object and subject child, and
noun phrase”.

We further evaluated the quality of the generated
question-answer pairs. A total of 715 QA pairs
were generated for the 8 products in 4 categories.
Similar to Deutsch et al. (2021) we calculate the
SCU coverage and precision for the QA pairs. QA
precision captures the amount of information ex-
pressed in the QA pairs that are also in the SCUs.
SCU coverage measures the amount of information
captured by the SCUs that can also be found in the
QA pairs. The results can be found in Table 2. By
adopting our answer selection strategy, a signifi-
cant amount of the information expressed by the
SCUs is captured by the generated QA pairs, with
95% coverage and 82% precision. The drop in QA
precision is not surprising since we are generating
questions more diversely, including information in

addition to SCUs.

Strategy QA Precision SCUs Coverage
NP 88% 92%
Ours 82% 95%

Table 2: QA precision and SCU coverage by the gen-
erated QA pairs for 8 products in 4 categories. Our
selection strategy generates QA pairs that have high in-
formation overlap with the SCUs.

In summary, we further investigated the quality
of the question-answer pairs generated using our
proposed strategy. We show that it generates QA
pairs that are high quality by covering a significant
amount of information expressed in SCUs.

Example questions and answers generated by
RunQA can be found in Table 3. In the first ex-
ample, the first two questions are generated based
on NPs. The third question is generated using an
adjective. In the first example, the reference answer
and the candidate answer do not match for the first
two questions, while they match for the third ques-
tion, which indicates that some information of the
reference summary is not captured in the candidate
summary.

6 Experiments for Summary
Information Quality

Introduced by Koto et al. (2020), coverage and
focus are metrics designed to evaluate informa-
tion in summaries. Coverage(recall) measures the
amount of key information expressed in the refer-
ence summary that is also captured by the candidate
summary. Focus(precision) measures the amount
of primary information expressed in the candidate
summary that is also true in the reference summary.
To compute coverage and focus, we need to gather
gold-standard scores by recruiting human annota-
tors. Then calculate the correlation between the
human annotations and the scores generated by the
metrics.

We followed Koto et al. (2020) and Graham et al.
(2017), and used the customised Direct Assessment
method to collect human scoring annotations using
the Amazon Mechanical Turk. The annotation in-
terface is shown in Figure 4. To control possible
bias in annotation, each HIT contained a balanced
number of annotations for both coverage and focus
using different products (30 different products). On
top of the 30 required annotations, each HIT also
contained 6 quality control questions. Where 3 are
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Reference Summary: This purse is well-designed in terms of appearance, but not in terms of usability
and reliability. It is smaller than advertised...
Candidate Summary: I love this purse! It is a bit smaller than I thought it would be, but I love it! It’s
a perfect size for me.
Question 1: This purse is well-designed in terms of what?
Reference Answer: appearance Candidate Answer: perfect size
Question 2: This purse is well-designed in terms of appearance, but not in terms of what else?
Reference Answer: usability Candidate Answer: NA
Question 3: How big is it than advertised?
Reference Answer: smaller Candidate Answer: smaller
Reference Summary: This camera bag, constructed as a backpack with padded straps and back is
functional and comfortable to wear as well... It is well designed and made of durable materials. . .
Candidate Summary: This is the best backpack I have ever owned. It’s very comfortable and holds a
lot of stuff...
Question 1: What is this camera bag constructed as with padded straps and back?
Reference Answer: a backpack Candidate Answer: backpack
Question 2: This camera bag, constructed as a backpack with what type of straps and back is functional
and comfortable to wear as well?
Reference Answer: padded Candidate Answer: backpack
Question 3: What type of material is it well designed and made of?
Reference Answer: durable Candidate Answer: NA

Table 3: Example question and answer pairs generated by RunQA.

exact match summaries that should score 100, and
3 are from random product pair summaries that
should score 0.

HITs were restricted to workers from English-
speaking countries, with over 10,000 approved
HITs and a 98% approval rate. We first collected
more than required, then filtered out annotations
that failed the quality control tests. It leaves us with
an uneven number of annotations per HIT (ranging
between 3 and 7). For quality control, we imple-
mented several tests. First, work is only considered
if a worker passed 4 of the quality control questions.
On top of the distractor questions in each HIT, we
further examine workers’ time spent on the task
and its variation of scores similar to Graham et al.
(2017). If the amount of time spent or the variation
between the scores is suspiciously low, we disre-
gard all of the worker’s annotations. Lastly, the
annotations are removed for workers with a Pear-
son Correlation to other workers(agreement score)
of less than 0.2.

After quality control, a mean Pearson Correla-
tion of 0.41 is achieved, with a reasonable aver-
age time spent (16.35 minutes) and a quality score
(94.74%). Like Koto et al. (2020) and Graham et al.
(2017), for annotations pass quality controls we
standardise the annotation scores to a z-score of

each worker before averaging. This helps remove
personal bias introduced by different annotators.
Then take an average among workers who com-
pleted the same HIT and use the score as the final
score for that HIT. We collected both the coverage
and focus scores for 180 (60 × 3) summary pairs.

We use various automatic metrics to generate
scores for the candidate summaries based on the
reference summaries, and then calculate their cor-
relation with human annotations. Each product has
3 reference summaries, we average both the human
and metric scores to one final score for each prod-
uct. The original BERTScore suggested when com-
paring against multiple references, the maximum
score should be used as the final score. We calcu-
lated both the maximum and average BERTScore
and found that the average score better correlates
with human judgements. Therefore, we use average
BERTScore instead of maximum in this paper.

We present the Pearson, Spearman, and Kendall
correlations between human annotations for cov-
erage and focus, with various metrics. Results are
shown in Tables 4 and 5, all results are significant
with p-value <0.01.

The token overlap-based metrics have the weak-
est correlation with human judgements in both cov-
erage and focus. Context embedding-based met-
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Figure 4: The interface for annotators on the Amazon Mechanical Turk platform.

Metric r ρ τ

ROUGE-1 0.479 0.472 0.310
ROUGE-2 0.413 0.387 0.265
ROUGE-L 0.439 0.403 0.266
MoverScore 0.535 0.471 0.334
BERTScore 0.599 0.549 0.398
QAEval 0.409 0.416 0.290
RunQA (F1) 0.460 0.484 0.344
RunQA (LERC) 0.597 0.575 0.400

Table 4: Pearson, Spearman and Kendall correlation
coefficients of metrics (Coverage)

Metric r ρ τ

ROUGE-1 0.496 0.494 0.339
ROUGE-2 0.525 0.543 0.374
ROUGE-L 0.436 0.388 0.254
MoverScore 0.609 0.597 0.432
BERTScore 0.651 0.645 0.470
QAEval 0.555 0.555 0.409
RunQA (F1) 0.551 0.654 0.475
RunQA (LERC) 0.714 0.712 0.542

Table 5: Pearson, Spearman and Kendall correlation
coefficients for metrics (Focus)

rics show a stronger correlation, especially with
BERTScore. Using F1 to evaluate answers in the
QA-based models has a similar performance as the
ROUGE family, where we suspect this may be due
to the exact match of answers with no consider-
ation of the questions or summaries. Compared
with QAEval, correlation improves significantly
for RunQA when the answer selection strategy
changes to our proposed strategy. RunQA (LERC)
has the strongest correlation with human judge-
ments, performs on-par with BERTScore in cover-
age, and shows the strongest performance in focus.

We further calculated the Pearson correlation for
the metrics. The correlation heatmap is shown in

Figure 5: Pearson correlation between metrics.

Figure 5. Similar to Eyal et al. (2019) and Deutsch
et al. (2021), we observe that the ROUGE family
correlates well with its variants. MoverScore and
BERTScore are highly correlated with each other,
this is not surprising since BERTScore is a special
form of MoverScore. They also have a moderate
correlation with the ROUGE variants. Whereas
the QA variants have a weak correlation with the
ROUGE family. This result suggests that RunQA
and QAEval are more likely to evaluate the infor-
mation expressed in summaries, which is distinct
from the lexical overlap in the ROUGE family.

7 Experiments for Ranking Summaries

One of the fundamental requirements for a sum-
marisation metric is to rank summaries and com-
pare the performance of summarisation systems.
To simulate the scenario of system summaries
with varying quality, we designed a task for rank-
ing summaries generated using the Copycat sys-
tem (Bražinskas et al., 2020b) and summaries gen-
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Metric Accuracy(%)
ROUGE-1 68.33
ROUGE-2 52.78
ROUGE-L 63.89
BERTScore 54.44
MoverScore 80.56
QAEval 77.78
RunQA (F1) 82.22
RunQA (LERC) 91.67

Table 6: The percentage of each metric that success-
fully assigns a higher score for the ground-truth sum-
mary(human system).

erated by human annotators. We then apply the
metrics to calculate the metric scores for human
and system summaries. The accuracy that a metric
correctly gives human summaries a score higher
than that for the Copycat system indicates the reli-
ability of the metric for comparing the human (as
an ideal system) and the Copycat system.

Generally, human-generated summaries are of
high quality. It is shown in Bražinskas et al. (2020b)
that while human ground truth has a relatively close
score in fluency compared against the Copycat
model, it outperforms all other models significantly
in all other dimensions, including Opinion Consen-
sus (measuring whether the summary reflects the
common opinions expressed in reviews). There-
fore, we would expect the human summary to have
better overall quality and should receive a higher
score than the system summary.

Previous work (Nenkova and Passonneau, 2004)
suggests that individuals tend to both write and
pick up information in different ways. For a fair
comparison, we compare the summary against dif-
ferent references using each metric. Then pick the
higher score because it means the two summaries
are closer in terms of information agreement. The
same reference is then used in the comparison with
the system summary.

We compare the scores generated using differ-
ent metrics for the human and the Copycat sys-
tem (Bražinskas et al., 2020b), and count the num-
ber of times the human system receives a higher
score. Accuracy is calculated by dividing the count
by the total number of references (180). The metric
with higher accuracy for rating a human summary
over a system summary is deemed to be more re-
liable with a better ability to distinguish between
better summaries.

The result is presented in Table 6, BERTScore
performs as poorly as the ROUGE family with only
54.44% of correct rankings. RunQA (LERC) per-
forms the best to rank systems, and can distinguish
the better quality human summary from the system-
generated summary over 90% of the time. We
suspect this is because RunQA ranks summaries
based on answerable questions hence evaluating
the information quality. The embedding-based met-
rics examine distance between tokens. If the layout
of the summaries is similar but express opposite
opinions, scores will be similar, which makes it
hard to rank summaries based on information qual-
ity. As discussed in (Tay et al., 2019), ROUGE is
not sensitive to opinion mismatch, which explains
its poor performance.

8 Limitations

While our study has shown that RunQA is a bet-
ter metric for opinion summarisation evaluation.
There are some limitations with our research. First,
we did the experiments using only one summari-
sation system. It would be more assuring if we
explored other summarisation models.

The dataset (Bražinskas et al., 2020b) in our
experiments is the only publicly available dataset
with a significant number of products and multiple
ground-truth summaries. The dataset is from the
product review domain and is not representative
of the other domains, such as restaurant or movie
reviews. Using multiple datasets and summarisa-
tion models would give a better picture in terms of
human correlation in different domains.

9 Conclusion

We proposed RunQA, which uses the Question-
Answering model to evaluate review summarisa-
tion. We proposed to identify answers based on
opinion-bearing token categories to generate QA
pairs. Experiments on a public Amazon review
summary dataset show that RunQA correlates well
with human judgements for evaluating the amount
of salient opinion captured in the candidate sum-
mary against the reference summary. RunQA is
also more reliable than existing metrics in the liter-
ature for ranking summaries.

RunQA has shown high potential when used
for opinion summarisation evaluation for opinion
quality. Our future work will explore applying
RunQA for review summarisation evaluation in
other domains.
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Abstract

GPT-2 has been frequently adapted in story
generation models as it provides powerful gen-
erative capability. However, it still fails to
generate consistent stories and lacks diversity.
Current story generation models leverage ad-
ditional information such as plots or common-
sense into GPT-2 to guide the generation pro-
cess. These approaches focus on improving
generation quality of stories while our work
look at both quality and diversity. We ex-
plore combining BERT and GPT-2 to build a
variational autoencoder (VAE), and extend it
by adding additional objectives to learn global
features such as story topic and discourse re-
lations. Our evaluations show our enhanced
VAE can provide better quality and diversity
trade off, generate less repetitive story content
and learn a more informative latent variable.

1 Introduction
Autoregressive pretrained models such as GPT-2
(Radford et al., 2019) have been frequently applied
to story generation. While GPT-2 can generate co-
herent single sentences, it suffers from inconsisten-
cies in the storylines and lacks generation diver-
sity, i.e. the storylines tend to use “bland” language
and multiple generation produces similar plot lines
(Guan et al., 2021). Current story generation mod-
els add more controllability into language models
for story generation, such as story plan (Yao et al.,
2019) or commonsense (Guan et al., 2020). These
approaches focus on improving generation quality
but does not address the diversity issue.

Variational autoencoder (VAE) is an extension
of autoencoder (AE) (Rumelhart et al., 1986). It
defines a prior distribution and the encoder learns
an approximate posterior distribution that is opti-
mised close to the prior distribution. In doing so,
the VAE is able to learn a more tractable latent
space than AE and it is easier to sample meaning-

ful latent variables to guide the generation process
to generate diverse meaningful sequences.

In order to leverage pretrained models for VAE,
Li et al. (2020) propose OPTIMUS, a large-scale
VAE that combines BERT (Devlin et al., 2019)
and GPT-2 (Radford et al., 2019) and further pre-
train it on large corpus to create an off-the-shelf
pretrained VAE. We follow a similar approach to
build our VAE in this paper, but our aim is to de-
velop a VAE for domain-specific story generation
(rather than creating a domain-general large-scale
pretrained VAE) and as such our evaluation focuses
on assessing generation capability.

Our core innovation in this paper is the introduc-
tion of multi-task learning objectives to the VAE to
enhance the latent variables, as Bosc and Vincent
(2020) found that they tend to learn local features
such as the first few words or the length of input
sequences. Our first auxiliary objective uses the
latent variable to learn story topics, and our sec-
ond objective seeks to distinguish between origi-
nal stories and “negative samples”, created by alter-
ing the stories to simulate common machine gen-
eration errors. We conduct experiments on sev-
eral datasets to show our proposed VAE has bet-
ter quality-diversity trade off than GPT-2 and learn
better latent representations than vanilla VAE.

To summarise: (1) we combine BERT and GPT-
2 to build domain-specific VAE for story gener-
ation; (2) we propose an alternative approach to
incorporate the latent variable into the VAE’s de-
coder; (3) we introduce two auxiliary objectives to
encourage the latent variable to capture topic in-
formation and discourse relations; and (4) we ex-
periment with several story datasets and show that
our enhanced VAE produces higher quality latent
variables and generates stories with better quality-
diversity trade off compared to GPT-2.
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2 Related Work

Conventional approaches of automatic story gener-
ation typically contain two parts: (1) learn a lan-
guage model from the training dataset with the ob-
jective of minimising KL divergence between prob-
ability distribution of training dataset and language
model; and (2) find the most suitable way to decode
the story from a given starting point (usually a title
or the leading context) with the trained language
model. Autoregressive transformers such as GPT-
2 (Radford et al., 2019) and its scaled-up GPT-3
(Brown et al., 2020) mask the attention heads af-
ter the current word during training so that they
can serve as language models to predict the next to-
ken. However, even large pretrained language mod-
els suffer from issues such as self-repetition, con-
flicting logic and incoherence (Guan and Huang,
2020).

Therefore, recent approaches resort to two main
strategies to alleviate above issues, by adding more
controllability into the story generation model and
incorporating commonsense knowledge. One of
the most influential strategies of controllability is
“plan and write" (Yao et al., 2019) where they first
use a RAKE algorithm to extract the most impor-
tant word from each sentence and train a story-
line planner based on such dataset. The language
model is trained conditional on both the previous
context and the keywords. During generation, the
keywords are generated from the given title and
can be used to guide generation of each sentence.
Commonsense contains shared knowledge about
the world (Alabdulkarim et al., 2021). Guan et al.
(2020) fine-tune a pretrained GPT-2 with knowl-
edge triples from commonsense datasets. They
first use pre-defined rules to turn triples into
sentences (e.g. (eiffel tower, AtLocation,
paris) → “eiffel tower is at paris”) and train on
the knowledge sentences with conventional max-
imum likelihood estimation objective. Xu et al.
(2020) combine these two approaches by first train-
ing a keyword planner with GPT-2 and use the key-
words to search a knowledgebase to retrieve the top
ranked sentences to guide the generation process.

The aforementioned approaches add comple-
mentary information in training the language
model, but does not address the diversity issue in
language generation. VAE can generate content
with more diversity (Kingma and Welling, 2019;
Yu et al., 2020), and has been variously explored
in story generation. For example, Jhamtani and

Berg-Kirkpatrick (2020) treat the latent variables
as story plots to guide story generation and Yu et al.
(2020) build a hiererchical conditional VAE draft
and edit stories.

To incorporate pretrained models for building
VAEs, Li et al. (2020) propose OPTIMUS, a VAE
that uses BERT (Devlin et al., 2019) as the en-
coder and GPT-2 (Radford et al., 2019) as the de-
coder. They further pretrain OPTIMUS on English
Wikipedia using standard VAE objectives to create
an off-the-shelf pretrained VAE, and demonstrate
its benefits as a pretrained model for downstream
tasks. We follow their approach of using BERT
and GPT-2 for building a VAE, although with a dif-
ferent goal: here we are interested in developing
domain-specific story generators, and as such our
evaluation metrics focus on assessing story gener-
ation capabilities.

Story evaluation is a challenging problem,
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) are commonly used to assess the quality of
generated stories. Diversity of generated stories
is another important evaluation aspect and Caccia
et al. (2020) propose temperature sweep to evalu-
ate the trade off between quality and diversity for
story generation models.

3 Framework

Denoting the text sequence as x and the latent vari-
able as z, a VAE uses the inference model (i.e.
the stochastic encoder) qϕ(z|x) to approximate the
posterior distribution, pθ(z|x), since the true pos-
terior density pθ(z|x) = pθ(x|z)pθ(z)/pθ(x) is in-
tractable (Kingma and Welling, 2014). The prior
over z is set as a multivariate Gaussian pθ(z) =
N(z; 0, I). VAE is trained with the evidence lower
bound (ELBO) loss:

Eqϕ(z|x)[logpθ(x|z)]−DKL(qϕ(z|x)||p(z)) (1)

The left part of equation can be interpreted as the
reconstruction loss (LR) and the right part as the
KL loss (LKL) that pushes the latent space close
to the pre-defined prior so as to obtain a regular
latent space.

We use BERT as the encoder and GPT-2 as the
decoder to build a VAE language model. BERT
naturally handles multiple sentences (delimited by
[SEP]) and we use the [CLS] token to represent
the whole story and add two linear layers on top
to compute the mean (µ) and standard deviation
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z [BOS] AX1 AX2 [EOS]...

(1) prepend

z

[BOS] AX1 ... [EOS]

...
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Figure 1: Illustration of three approaches of interacting
the latent variable with decoder input. Both [BOS] and
[EOS] are <|endoftext|> token in GPT-2. “A” denotes
the first sentence of the story, x1 and x2 represent to-
kens of the first sentence. For the “memory” approach,
different colors indicate different layers in GPT-2.

(σ) of the latent variable z. To incorporate the la-
tent variable z into the GPT-2 decoder, we explore
two approaches: (1) “prepend”, where we append
the latent variable as prefix token at the beginning
of input sequence. (2) “memory”, where we apply
an MLP to the latent variable to generate key and
values in each layer (proposed by Li et al. (2020));
and Figure 1 presents an illustration of these two
approaches.

3.1 Global Feature Learning
To encourage the VAE to learn global features, we
propose a multi-task learning framework. Figure 2
presents an overall architecture of our model. The
first objective is the reconstruction objective (LR,
the left part of Equation 1). The two additional
objectives train latent variable to: (1) predict the
story topic; and (2) distinguish between negative
samples vs. original stories. These auxiliary objec-
tives are designed to encourage the latent variable
to capture topic and discourse information.

Story Topic Learning We add additional MLP
layers to learn the topic distribution of the story
and calculate the topic loss with the ground truth
topic distribution of the document based on KL di-
vergence. While this is straightforward for topic-
annotated dataset which contains ground truth
topic labels, most story datasets do not have such
label. To this end, we train a latent Dirichlet allo-

BERT

[CLS] She sleeps with a
doll. [SEP]

Original Stories

h[CLS]

Posterior Distribution

mean

variance
z

Prior Distribution
KL  divergence

GPT-2

Task One: Reconstruction

Predicted topic

Gold topic

Task Two: Topic Learning

Predicted
discourse label

True discourse
label

Task Three: Discourse Learning

[CLS] She sleeps sleeps
with a ghost. [SEP]

[CLS] She sleeps with a
doll. [SEP]

Reconstructed Stories

Negative Samples

Figure 2: Our proposed multi-task VAE model with pre-
trained BERT and GPT-2. In additional to the original
objective of reconstructing the original story, the latent
variable is also used to predict the story topic and distin-
guish between original and negative samples. Here we
show a simple one sentence story and the negative sam-
ple is constructed using repetition and substitution. Our
training dataset contains stories of multiple sentences,
separated by [SEP].

cation topic model (Blei et al., 2003) to extract the
topics. We use the topic model-inferred topic dis-
tribution Q(T ) of each document as ground truth
and compute KL divergence as the loss. Note that
we use the full topic distribution instead of select-
ing one topic with the highest probability as the
representative topic as the full distribution is more
informative and that most documents have multiple
topics.

Given z, we predict the topic distribution P (T )
as follows:

P (T ) = softmax(Wtz + bt) (2)

We calculate the topic loss LT with KL diver-
gence over the predicted and topic model-inferred
topic distribution as follows:

LT =
∑

t∈T
P (t)log

(
P (t)

Q(t)

)
(3)

Story Discourse Learning For discourse rela-
tion learning, we first construct negative samples
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from the original stories. Following Guan and
Huang (2020), we use a random combination of
four heuristic rules to construct the common ma-
chine generation issues in story: (1) repeat of n-
grams or sentences, (2) substitution of random key-
words or the entire sentence, (3) reordering of sen-
tences and (4) negation alteration of the original
sentences. Table 1 presents some examples of orig-
inal stories and altered stories (negative samples).

Given a story and its discourse label (1.0 for orig-
inal stories or 0.0 for negative samples) and z, we
apply a linear layer on z to compute the discourse
score ŷn:

ŷn = sigmoid(Wdz + bd) (4)

We then compute the discourse loss LD using
standard binary cross entropy:

LD = −ynlogŷn − (1− yn)log(1− ŷn) (5)

For each original story, we create one negative
sample.

Given the topic and discourse losses, we add
them with weights to the original reconstruction
loss and KL loss function to train the VAE and per-
form grid search to find the suitable weights. Dur-
ing training, to alleviate posterior collapse — the
issue where both the variational posterior distribu-
tion obtained from the encoder and the true pos-
terior for the real dataset collapse to the prior, re-
sulting in zero KL loss (He et al., 2019) — we use
β-VAE (Burgess et al., 2018) that sets an additional
target C to the KL loss (by computing an absolute
difference between KL loss and C) to optimise it
close to C. The full objective our model is thus
given as follows:

L = LR + β
∣∣LKL − C

∣∣+ α LT + γ LD (6)

where β, α and γ are hyper-parameters to control
the weights of different objetives.

4 Dataset
We use four datasets in our experiments: ROCSto-
ries, APNEWS, Reuters and WritingPrompts. AP-
NEWS is a collection of Associated Press news
(Bhatia et al., 2017) from 2009 to 2016. Reuters1

is the Reuters-21578 “ApteMod" corpus for text
categorization from the Reuters financial newswire
service. ROCStories (ROC) contains common-
sense stories of five sentences (Mostafazadeh

1https://www.kaggle.com/nltkdata/reuters

et al., 2016). To obtain more generalization as
all sentences are rather short in the dataset, we
follow the delexicalization approach from prior
studies (Guan et al., 2020; Xu et al., 2020)
where male/female/unknown names are replaced
by tokens [MALE]/[FEMALE]/[NEUTRAL]. The
WritingPrompts (WP) dataset consists of 303,358
human generated long stories from Reddit’s Writ-
ing Prompts forum2. Fan et al. (2018) collect them
by scraping three years of prompts and their asso-
ciated stories. We use 10% of the stories in our ex-
periments. Table 2 presents some statistics of the
four datasets.

In terms of preprocessing, we add [SEP] token
at the end of each sentence and use WordPiece to-
kenizer for BERT and Byte-Pair-Encoding (BPE)
for GPT-2. We set the maximum length of a story
as 100 subwords for short story datasets (ROC and
Reuters) and 200 for long story datasets (APNEWS
and WritingPrompts).

5 Experiments
We use implementations of BERT and GPT-2 from
HuggingFace (Wolf et al., 2019). We set learning
rate at 10−4 and use Adam (Kingma and Ba, 2014)
as optimiser. The dimension of latent variable is
set as 256. All models are trained using 20 epochs
on single NVIDIA V100 GPU node per model.

5.1 Topic Extraction
We use MALLET LDA3 to extract the topics. We
filter out tokens that appear more than half of the
dataset and keep the most frequent 50K tokens as
the vocabulary for the LDA models. We select the
best topic number based on topic coherence (Röder
et al., 2015).

5.2 Evaluation Metrics
We evaluate our system using intrinsic metrics
where we compute perplexity, number of active
units of language model training and the extent
to which the latent variable captures topic and
discourse information. To evaluate story genera-
tion capability, we look at self-repetition metrics
and measure the quality-diversity trade off using
Corpus-BLEU.

Perplexity (PPL) Perplexity of test data is
widely used to evaluate language models. How-
ever, exact PPL is unavailable so ELBO is often

2https://www.reddit.com/r/WritingPrompts/
3http://mallet.cs.umass.edu
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Rule Original Story Negative Sample

repeat, sub-
stitution and
negation
alteration

[NEUTRAL] knew the solution to a
problem . he told people the solution
. the people thought [NEUTRAL] was
smart . [NEUTRAL] agreed with them
. [NEUTRAL] went on to achieve .

[NEUTRAL] knew the solution to a
problem . he told animals the solution
. [NEUTRAL] did not go on to achieve
. he told animals the solution . he told
animals the solution .

reordering
and substitu-
tion

[FEMALE] really loved the sun . she
would play in it all day . one day the
dark clouds came and shooed the sun
away . [FEMALE] was very sad to see
it go . she was happy though when she
saw it back the next morning !

[FEMALE] really loved the sun . she
was happy though when she saw it back
the next morning ! she would play in it
all day . [FEMALE] was very sad to see
it go . one day the dark clouds came and
shooed the moon away .

Table 1: Examples of negative story samples generated from a combination of heuristic rules of repeat, substitution,
reordering and negation alteration.

Collection Average
Length

Training Development Test
#Docs #Tokens #Docs #Tokens #Docs #Tokens

APNEWS 138 46.4K 4.68M 1.9K 187K 1.8K 187K
Reuters 88 7.8K 695K 2K 180K 1K 93.6K
ROC 60 88K 5.28M 5K 0.3M 2K 0.12M

WritingPrompts 110 26.8K 2.95M 2K 0.22M 2K 0.22M

Table 2: Statistics of APNEWS, Reuters, ROC and WritingPrompts Dataset.

used to approximate the probability. But as Li et al.
(2019) found, such approximation is not appropri-
ate since the gap between ELBO and log marginal
likelihood might be large when the true posterior
did not converge with the approximate posterior.
Burda et al. (2016) propose using k-sample impor-
tance weighting estimate, which provides a tighter
lower bound for the log marginal likelihood with
Jensen’s inequality. Our results therefore use this
approach for computing PPL.

Number of Active Units (AU) Burda et al.
(2016) propose a way to evaluate if each dimension
of the latent variable is active over the posterior dis-
tribution as follows:

Au = Covx(Eu∼q(u|x)[u]) (7)

and set the bar that the dimension u of the latent
variable is active if Au > 0.01. Intuitively, more
active units means a more informative latent vari-
able is learned from the input.

Sequence Repetition As neural generation mod-
els are prone to generate repetitive content with
high probabilities (Yao et al., 2018), we evaluate

sequence-level repetition evaluation by computing
the portion of duplicate n-grams for a continuation
xk+1:k+N :

1.0− |unique n-grams(xk+1:k+N )|
|n-grams| (8)

Corpus-BLEU and Self-BLEU Corpus-BLEU
uses the test dataset as reference and compute
BLEU score for each generated story and use aver-
age result as a measurement of quality. Zhu et al.
(2018) propose Self-BLEU, that regards one gen-
erated story as the hypothesis and all other gen-
erated stories as the references and calculates the
BLEU score for each story and use the average
score to measure diversity. A lower Self-BLEU
score means the story is less similar to the other
generated stories, and thus, higher diversity.

5.3 Evaluation Results
5.3.1 Intrinsic Results
We first show evaluation results where we explore
two methods (“memory” and “prepend”) of inject-
ing z to the decoder on ROC in Table 3. Here the
models are vanilla VAE models without the auxil-
iary losses (as our objective here is to evaluate the
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Method C Recon. loss KL loss AU PPL
prepend 6.0 123.89 5.96 209 9.53
prepend 8.0 122.61 7.99 206 9.58
prepend 10.0 121.64 9.96 197 9.61
memory 6.0 127.67 5.94 0 9.69
memory 8.0 127.49 7.93 0 9.80
memory 10.0 127.46 9.84 0 9.96

Table 3: Intrinsic results of training with different C in
beta-VAE (Equation 6) and with “prepend” and “mem-
ory” (Section 3) for incorporating the latent variable to
the decoder on the ROC dataset. PPL is computed by
500 samples of importance weighting estimate.

best way to incorporate the latent variable to the
VAE’s decoder). Note that perplexity is estimated
using 500 samples with importance weighting and
it captures both reconstruction and KL loss. We
found that “prepend” generally outperforms “mem-
ory”, as it can keep more dimensions of the latent
variable active while “memory” has no active di-
mensions. It also has a KL divergence marginally
closer to the target (C in Equation 6), and has
better reconstruction and overall better perplexity.
“prepend” is in a way similar to memory where all
tokens in the GPT-2 input have the extra vector to
attend to, but instead of transforming it using ex-
tra MLP layers, “prepend” relies on the inherent
self-attention mechanism to produce a more natu-
ral key/value representations in each layer, which
might explain the improved performance.

By increasing C for the KL target, more infor-
mation is encoded into the latent variable, and so
the model achieves a better performance in terms
of reconstruction loss. But this also means it be-
comes harder to sample a latent variable from the
prior, as the posterior no longer matches the prior,
and as such we see an increase of perplexity. Our
results highlight the importance of controllingC to
find a reasonable trade off between reconstruction
and KL loss.

Given these results, we next train the VAE with
the topic and discourse objectives (Section 3.1), us-
ing C = 6.0 and the “prepend” method. We now
assess the extent to which the encoder can identify
the topics or distinguish between the original sto-
ries and stories with flaws (negative samples).

Topic Learning Evaluation We evaluate the ex-
tent to which the BERT encoder can learn story
topics in the latent space and how much the GPT-
2 decoder can make use of it. We use the Reuters

Model µ z

AE 0.702 0.699
VAE 0.446 0.436

VAE+t 0.691 0.583

Table 4: Topic classification accuracy using mean of
the posterior distribution µ and the latent variable z on
Reuters.

dataset here since the documents/stories are anno-
tated with ground truth topics.

We follow Bosc and Vincent (2020) and freeze
the parameters of BERT and add one MLP layer
on top of the mean of the posterior distribution µ
and the latent variable z and train a classifier to
predict the ground truth topics and report test accu-
racy results in Table 4. The baseline “AE” is a VAE
model without using the KL loss (LKL in Equation
1), and so functions like an autoencoder (since the
posterior is no longer constrained to be close to the
prior).

Looking at the results, we see that using µ as in-
put for the classifier yields much better results com-
pared to using the latent variable z. But as pointed
out in Bosc and Vincent (2020), z is ultimately the
latent variable that goes into the decoder, and so the
performance using z is the more important num-
ber. There is no surprise that AE achieves better
test accuracy scores with both µ and z than vanilla
VAE since the VAE’s encoder is forced to discard
some information in the posterior distribution so as
to match the prior distribution. Encouragingly, we
see that our topic-enhanced VAE is indeed able to
capture much of the topic information, producing
a better topic classification accuracy compared to
vanilla VAE.

Discourse Learning Evaluation One advantage
of our discourse-enhanced VAE is that after train-
ing we can obtain a discourse score using the out-
put of the additional layer (Equation 4), which tells
us the quality of a story. Table 5 presents the pre-
dicted discourse scores on a set of generated stories.
Note that all stories are generated from randomly
sampled latent variables. Looking at the generated
stories, we found that stories with high discourse
scores are generally coherent, while stories with
low scores often have logical or repetition prob-
lems. To quantify this, we compute the average
discourse score on test stories and their negative
samples, and the average scores are 0.75 and 0.25
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Score Story Issue

0.83 [MALE] went fishing . he was excited about the trip . he saw a big fish . he was excited to get
it . he caught a huge fish .

0.81 [FEMALE] was nervous for her first day of school . she was nervous because she was so new
to school . [FEMALE] was scared to be in the classroom . the teacher introduced her to other
students . [FEMALE] was very excited to learn about her new class .

0.56 [FEMALE] was hungry for some cookies . she decided to make some chocolate chip cookies .
she mixed the ingredients together . then she mixed them together . [FEMALE] was happy to
have some cookies .

repeat

0.48 [FEMALE] was a lesbian . she was in love with [MALE] . [MALE] was jealous of her .
[FEMALE] ’s boyfriend cheated on her . [FEMALE] was dumped .

conflict logic

0.40 [MALE] received a call from his boss . he had a promotion . he took it . he took it anyway .
he got it .

repeat and inco-
herent

0.32 [MALE] grew up on a farm . [MALE] wanted to grow vegetables . he was tired of them .
[MALE] bought carrots . he then grew vegetables .

incoherent

Table 5: Predicted discourse scores using the discourse-enhanced VAE.

respectively, showing that our discourse-enhanced
VAE is able to distinguish between original stories
and negative samples.

5.3.2 Extrinsic Results
Quality and Diversity Trade-off Quality and di-
versity of generated stories from a model can be af-
fected by decoding strategies. Therefore, it is dif-
ficult to determine which model is superior based
on a single performance since models that achieve
high quality score tend to lack diversity (Caccia
et al., 2020). Temperature sweep uses a set of qual-
ity and diversity results generated by altering val-
ues of temperature in temperature sampling, and
the best model is one that produces the best trade
off between these two aspects (Caccia et al., 2020;
Hashimoto et al., 2019; Alihosseini et al., 2019).
We follow this evaluation approach and use top-p
sampling with varying p values as Holtzman et al.
(2019) demonstrate that top-p sampling has a better
control over sampling and produce sequences that
have a more similar nature with human text than
temperature sampling.

We use a range of different p values from 0.4 to
1.0 with an increment of 0.02, creating stories for
31 different p values to assess the quality and di-
versity trade off. For each p value, we sample 500
latent variables from the prior distribution to gener-
ate 500 stories. The results are shown in Figure 3.
Note that we use negative Corpus-BLEU here (by
flipping the sign), so that a lower score indicates
better performance for both scores. The best model
is one that produces a trade off curve closest to the
axes. The figure shows that the VAEs generally

achieve a better trade off than fine-tuned GPT-2 in
all domains. Encouragingly, our enhanced VAEs
(“VAE+t”, “VAE+d” and “VAE+td”) also per-
form generally better than the vanilla VAE (with
the exception of the WP dataset). Curiously, AE is
not able to generate high quality stories under our
tested p values and it produces a short curve near
the bottom right corner.

Sequence Repetition Self-BLEU measures the
diversity of a set of generated stories, revealing
whether they tend to use similar plots or share sim-
ilar words. Here we assess the extent of self repeti-
tion within a story. We compute 4-grams repetition
(“seq-rep-4”; Equation 8) and present the results
in Table 6 for the ROC dataset.4 Note that a lower
score means less repetition (better performance).

We can see that higher p values produce
less repetitive texts (lower scores) since at each
timestep more word types are included in the sam-
pling process. For comparison, we also compute
the “human” repetition score using the test data and
its result is 0.021. At lower p values, the VAE
models tend to have much lower repetition than
the fine-tuned GPT-2. However, if we do not con-
strain much on the token probabilities and use a
higher p values, most models produce similar repe-
tition scores. At the extreme when we set p = 1.0,
all models are able to generate stories with little
self-repetition like the human-written stories. AE
seems to be able to repeat less, however the gener-
ated stories tend to be incoherent (recall in Figure

4Other domains produce similar trends and for brevity we
present only the ROC results.
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Figure 3: Quality and diversity trade-offs of generated sentences on three dataset. For both quality and diversity
metrics, lower score means better performance and the curve that is closest to the axes have the best overall perfor-
mance.

Model p value
0.4 0.5 0.6 0.7 0.8 0.9 1.0

GPT-2 0.0594 0.0300 0.0196 0.0125 0.0081 0.0043 0.0021
AE 0.0009 0.0006 0.0009 0.0004 0.0004 0.0005 0.0002

VAE 0.0297 0.0191 0.0153 0.0109 0.0070 0.0042 0.0021
VAE+t 0.0272 0.0235 0.0185 0.0124 0.0077 0.0045 0.0028
VAE+d 0.0257 0.0173 0.0143 0.0114 0.0086 0.0049 0.0031
VAE+td 0.0237 0.0218 0.0168 0.014 0.0078 0.0054 0.0031

Table 6: Sequence repetition of 4-grams of generated stories under different p values with top-p sampling on ROC.

3 we saw it has poor Corpus-BLEU scores gener-
ally).

6 Conclusion

We explore using pretrained models such as BERT
and GPT-2 to build a VAE for story generation. We
additionally propose enhancing the VAE by intro-
ducing two auxiliary objectives to encourage it to
learn topical and discourse information in the sto-
ries. Our experiments show that the latent variable
of our enhanced VAE is more informative, in that
it captures the story topics and good vs. poor qual-
ity stories. In terms of story generation, we also
demonstrate that our enhanced VAE produce gen-
erally a better quality-diversity trade off compared

to vanilla VAE and GPT-2.
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Abstract

With the increasing impact of Natural Lan-
guage Processing tools like topic models in
social science research, the experimental rigor
and comparability of models and datasets has
come under scrutiny. Especially when con-
tributing to research on topics with worldwide
impacts like energy policy, objective analyses
and reliable datasets are necessary. We con-
tribute toward this goal in two ways: first,
we release two diachronic corpora covering 23
years of energy discussions in the U.S. En-
ergy Information Administration. Secondly,
we propose a simple method for automatic
topic labelling drawing on domain knowledge
via political thesauri. We empirically evalu-
ate the quality of our labels, and apply our la-
belling to topics induced by diachronic topic
models on our energy corpora, and present a
detailed analysis.

1 Introduction

Policy-making in highly technical areas such as
energy is deemed to require neutral input from spe-
cialised government agencies, e.g. the US’s Energy
Information Administration (EIA) or the Interna-
tional Energy Agency (IEA). Their publications are
known as“grey literature”, given that they are ex-
pertly produced but not peer-reviewed. In contrast
to academic literature, grey literature is often freely
available online and aims to be more accessible to
lay readers.

Energy grey literature has been shown to display
biases towards incumbent fossil fuel technologies
(Martı́nez Arranz, 2016; Mohn, 2020), but no thor-
ough exploration exists of the disconnect between
grey and academic literature in their coverage of
energy issues. In this paper, we provide a repro-
ducible and automated assessment of topics across
both literatures.

We analyse and make available two diachronic

corpora derived covering 23 years of energy discus-
sions from two EIA publications: the International
Energy Outlook (IEO) and the more nationally fo-
cused Annual Energy Outlook (AEO). Parsing re-
ports of government agencies is non-trivial due to
their diverse layouts (changing over time), and text
frequently disrupted with tables and graphs. We
release a clean text corpus as a basis for future re-
search on energy communication. We also make
available a software tool-set for the creation and
analysis of these corpora, easily generalisable to
diachronic datasets in general.

We analyse the corpora using dynamic topic
models (Blei and Lafferty, 2006). We compare
their discussion of various facets of energy politics
against the discourse in the scientific community
over the same period, drawing on a corpus of ab-
stracts of articles published in established energy
journals.

By releasing our grey literature corpus, we ad-
dress the reproducibility challenge of large-scale
text analyses with unsupervised models like topic
models in the social sciences (Müller-Hansen et al.,
2020). Studies are often difficult to reproduce, com-
pare against or build upon due to a lack of public
resources, as well as ad-hoc subjective choices of
the researchers. We address the latter problem by
proposing a conceptually simple and theoretically
sound method for automatic topic labelling, draw-
ing from thesauri over the political domain. In
summary, our contributions are:

• A diachronic dataset of grey literature from
the EIA, supporting research into (a) the dis-
cussion of energy policies and technologies
over time; and (b) the discussion of energy
policies across outlets. We release scripts to
reproduce our data set at at: https://github.
com/tscelsi/eia-diachronic-analysis

• A topic labelling framework for policy is-
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sues, leveraging the publicly available and
exhaustive EuroVoc thesaurus. Publicly
available at https://github.com/tscelsi/
dtm-toolkit

• A comparison of the dynamics of energy-
related topics within and between grey and
academic literature with a focus on electricity
generation technologies, sustainability, and
geopolitics & economy.

2 Background

Topic modeling Topic models are statistical
models which aim to uncover latent semantic struc-
ture of texts through a small set of distinctive topics,
each of which is represented through a coherent set
of words. Latent Dirichlet Allocation (LDA; Blei
et al. (2003)) is probably the most widely used
topic model, where each document d is modelled
as a mixture of topics k, p(k|d), and each topic is
represented as a probability distribution over words
w, p(k|w). LDA is an exchangeable model, it is
agnostic about the order of words and documents.
Applications of topic models to social science ques-
tions (including our own), however, have a specific
interest in the temporal development of topics.

The dynamic topic model (DTM; Blei and Laf-
ferty (2006)) extends LDA to time series data, cap-
turing the subtle changes of the same topic over
time, with the intuition that over extended periods
of time, discussions, themes and words surrounding
the same topic change. The DTM accounts for this
evolution by inducing topic proportions as well as
topic representations sensitive to time t as p(k|d, t)
and p(w|k, t), respectively. The time-specific pa-
rameters are tied through a random walk process in
order to encourage a smooth change from time t to
t+ 1.

Topic models and their dynamic counterparts
have been extended to leverage the power of deep
learning (Card et al., 2017; Dieng et al., 2020,
2019) leading to a better data fit at the cost of
substantial increase in compute cost and technical
expertise. In this work we will leverage the DTM
as introduced above to explore the discussion of
energy technologies in scientific and government
publications over the past 30 years.

Topic labelling Topics as induced by the DTM
are probability distributions over the vocabulary.
While they are often visualized through the top
N words with highest probability, a principled

interpretation of their content remains a chal-
lenge. Various methods have been proposed for
labelling a topic, ranging from single best word
selection (Lau et al., 2010) over involved methods
leveraging domain-general external resources like
Wikipedia (Lau et al., 2011; Bhatia et al., 2016) by
retrieving relevant phrases, which requires substan-
tial IR and NLP overhead to process the potential
label inventory. Other work has employed graph-
based methods over the structured DBPedia (Hul-
pus et al., 2013) , generated candidate labels using
WordNet (Poostchi and Piccardi, 2018) or created
descriptive labels as text summaries by extracting
and aggregating candidate sentences from docu-
ments highly relevant to a topic (Wan and Wang,
2016). We propose a simpler solution by leverag-
ing structured, and broadly domain-relevant The-
sauri as our label inventory. Specifically, we use
the EuroVoc thesaurus, compiled by the European
Union which covers all areas of European Parlia-
ment discussion (including energy policy), noting
that our methods extend to any thesaurus. We pro-
pose methods for filtering the resource to a focused
set of labels (§ 4.1); and mapping induced topics
to one or more thesaurus labels (§ 4.3).

2.1 The EuroVoc Thesaurus
EuroVoc1 is a multilingual thesaurus (Steinberger
et al., 2014), originally developed as a framework
to support hierarchical search and indexing of doc-
uments produced in the European Union (EU). It
covers a wide range of political terminology, and
consists of 127 general “topics”, each associated
with a list of phrases (cf., Table 1). EuroVoc has
been used in the NLP community predominantly
in the context of multi-label classification (Stein-
berger et al., 2012) and as a multi-lingual lexical
resource (Fišer and Sagot, 2008). To the best of
our knowledge, this paper is the first to leverage
this openly available, expert-created resource for
principled labelling of automatically learnt topics.
We use the English EuroVoc in this work, leaving
multi-lingual topic labelling for future work.

3 Data

3.1 Grey Literature: The EIA Corpus
We focus on publicly available documents by the
US Energy Information Administration (EIA). The
EIA is the longest extant energy agency and the
US is the world’s second energy consumer and

1https://op.europa.eu/s/sCG9
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Renewable Energy: bioenergy, biogas,
geothermal energy, marine energy, renewable
energy, soft energy, solar energy, wind energy

Prices: reduced price, price index, price reduc-
tion, farm prices, world market price, target
price, producer price, price list, price increase

Environmental Policy: nature reserve, waste
recycling, industrial hazard, environmental tax,
emission allowance, environmental impact

Table 1: Selected EuroVoc labels (bold) and some of
their associated keyphrases.

producer of energy, being recently overtaken by
China. Its Annual Energy Outlook (AEO) and In-
ternational Energy Outlook (IEO) are mandated
to provide US citizens and lawmakers with future-
oriented evaluations of, respectively, domestic and
international energy trends.2

We obtained all IEO and AEO releases between
1997–2020.3 Python package pdfminer4 was
used to convert the PDFs to text, adjusting parser
parameters to ensure adequate parsing of single-
and multi-column documents.

3.2 Scientific Literature: The Journals
corpus

In order to obtain a reliable corpus of academic
literature to contrast against EIA publications, we
select two top-ranked energy policy journals in
the Scimago Journal rankings in both 1999 and
2019: Applied Energy and Energy Policy. Both
are open to submissions on any technology, and
deal with policy and applied engineering questions
that should be closest to the concerns of the EIA.
Through the Scopus Search API complete view,5

we download all article abstracts published in these
two journals for the period 1997-2020. The format
is already machine-readable and contains metadata
on publication date requiring only minimal data
cleaning.

We assume that abstracts synthesize the main
points of each paper succinctly. Future research

2https://www.eia.gov/
3IE0 and AEO have been released since 1985 and 1979,

respectively. Parsing earlier documents would have involved
OCR, which we rejected in the interest of producing a high-
quality dataset. The 2021 reports have not been released at the
time of research.

4https://pypi.org/project/pdfminer
5https://dev.elsevier.com/sc_search_

views.html

could include analysing the entire textual content
of the papers.

3.3 Corpus Analysis

We automatically split each parsed EIA report into
header-paragraph pairs, which are then used as
documents to train our topic models. Paragraphs
and headers were identified based on font size. As
mentioned previously, for the Journals corpus we
focus only on the abstract paragraphs of each paper
and use these as documents to train our Journals
topic models. We tokenize all corpora using spaCy.

Table 2 lists various statistics for our three cor-
pora. Given that we train topic models over doc-
uments corresponding to paragraphs in the grey
literature, we verify that paragraphs are of suffi-
cient length to support topic modelling. From the
average sentence per paragraph aggregations we
can see that the EIA paragraphs are longer than the
Journals paragraphs, however, the Journals corpus
is significantly larger than the EIA corpora.

4 Topic Labeling with Thesauri

In this section we propose a new way of assign-
ing automatic labels to DTM topics. Even though
a variety of methods for automatic topic labeling
exist (Lau et al., 2010, 2011; Sorodoc et al., 2017;
Hulpus et al., 2013), case studies in the social sci-
ences have largely resorted to qualitative analy-
sis and manual labeling (Martı́nez Arranz, 2015;
Müller-Hansen et al., 2020), resulting in a bottle-
neck for analysis as well as the potential for intro-
duction of human bias.

We introduce a general and conceptually simple
method, drawing on established domain-specific
thesauri as a label inventory, and propose two meth-
ods for mapping topics to a small set of labels that
reflect its content. We use the EuroVoc thesaurus in
our study (§ 2.1), however, our method generalizes
to any domain-specific thesaurus which organizes
related keyphrases into succinct labels. Formally,
we describe the set of EuroVoc labels as L. Each
label l ∈ L represents a set of keyphrases6 v in
the EuroVoc thesaurus that fall under that label
(Table 1).

Our method consists of two steps: (1) thesaurus
filtering, in order to retain only domain-relevant
labels; and (2) an algorithm to map a topic (repre-
sented as a weighted list of words) to one or more

6Keyphrases can consist of one or more tokens. e.g. mining
industry
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Source Corpus # Paragraphs #Token (thousands) Avg. #sentences / paragraph Years

EIA AEO 2,909 1,919 18.1 1997-2020
EIA IEO 1,411 1,475 51.42 1997-2020

Scopus Journals 24,353 5,483 7.87 1997-2020

Table 2: Corpus statistics.

labels (each represented as an unweighted set of
associated phrases). Below we describe both steps,
and propose two concrete mapping algorithms.

4.1 Label Filtering
The EuroVoc thesaurus was designed to cover all
policy areas within the context of the EU. How-
ever, we are often interested in a subset of policy
discussions and we can increase the relevance of
our label selection by constraining the choice. We
first remove all EU-specific entries (coded 10XX
in the EuroVoc system; e.g. ”EU finance”), remove
near-duplicates (e.g., ”economic geography” and
”political geography” consist of country names),
and merge highly similar labels whose phrases’
mean GloVe embeddings value have a cosine sim-
ilarity greater than 0.95 (e.g. ”trade” and ”trade
policy”).

From the remaining set, we filter irrelevant la-
bels using log-odds ratios with informative Dirich-
let prior (Monroe et al., 2008; Lucy et al., 2020), a
widely used method to identify words that are statis-
tically over-represented in a focus corpus of interest
Cf as those words that have a higher chance of oc-
currence compared to a suitably chosen reference
corpus Cr. Raw log-odds have a bias toward low-
frequency words, which is alleviated by the Dirich-
let prior which forces high-odds terms to signifi-
cantly deviate from word-specific expected value
of counts (as estimated from the jointCf ∪Cr). We
take as our focus corpus the concatenated three en-
ergy corpora described in § 3, while our reference
corpus a representative sample of discussions in the
Australian parliament, reflecting general political
discourse as covered in EuroVoc.7

We calculate the log odds scores for all the terms
in the EuroVoc dictionary, and associate each Eu-
roVoc label l with a relevance score sl as the me-
dian log-odds score of its associated terms in Eu-
roVoc,

sl = median({LO(v)} : v ∈ V Cf ∩ V l), (1)
7See https://www.aph.gov.au/

Parliamentary_Business/Hansard

where V Cf and V l is the corpus vocabulary and
the set of keyphrases under label l, respectively,
and LO(v) is the log-odds score of term v. We
finally retain the top 40 labels with highest sl as
our energy topic label inventory.

4.2 DTM Topic Representation

The DTM learns one topic representation per time
period, however, we want to assign EurVoc labels
to topics as a whole. We obtain a single, global
representation for each topic k as its aggregate
weighted sum over all time steps t, where the terms
at each timestep are weighted by that topic’s prob-
ability of occurrence at that time. We then retain
the 10 terms with highest score, and re-normalize
the resulting scores to a valid probability distribu-
tion. The resulting topic representation is a 10-
dimensional unit vector, which we denote as k̂, and
we refer to a word w’s probability under this repre-
sentation as k̂[w].

4.3 Topic Labeling

Given a DTM topic k represented as k̂, we want to
assign the top N EuroVoc labels that best match
the topics content. We approach the automatic la-
belling task in two ways. The first is a match-based
approach and the second uses word embeddings to
label topics.

4.3.1 Importance-Based Topic Labeling

Intuitively, a label is relevant to a learnt topic
if (a) it contains the topic’s most relevant terms;
and (b) these keyphrases are unique to the label,
and do not occur widely across EuroVoc labels
(”keyphrase uniqueness”). If a term occurs in many
labels, it is often less informative as it loses the
ability to distinguish labels. We quantify term-
topic relevance as k̂[w] the probability of w in the
re-normalized topic representation; and keyphrase
uniqueness as TFIDF [w, l], the TFIDF value of
w under l, where the documents are all EuroVoc
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labels. The final topic-label score σimp
k,l is

σimp
k,l =

∑

w∈k̂∩l
k̂[w]× TFIDF [w, l]. (2)

We define the intersection in the summation based
on either a full or a sub-token match between topic
term and label keyphrase (e.g., topic term solar
would match label keyphrase solar energy).

The proposed method is fast and simple to imple-
ment, and requires no resources beyond the trained
topics and thesaurus labels. A disadvantage is its
string-matching approach, which is oblivious to
synonyms, or thematically related words. Our sec-
ond labeling approach addresses this weakness.

4.3.2 Embedding-based Topic Labeling
The second approach makes use of pre-trained
word embeddings. At a high level we produce an
aggregated representation of our top word vector
k̂ as well as each EuroVoc label l in word vector
space. We obtain a similarity score as the cosine
similarity between the topic and label embeddings.

We use 50-dimensional pre-trained GloVe em-
beddings (Pennington et al., 2014).8 We convert
our top word vector k̂ into an embedding-based
vector embk, by taking a weighted average of the
GloVe embedding representations of each word
in it, where each word embedding is weighted by
the words topic relevance k̂[w]. An embedding for
label l, embl, is computed as an unweighted aver-
age over its keyphrases. Multi-token topic terms
(or keyphrases in EuroVoc) are represented as an
unweighted average over their token embeddings.

The relevance score σlk for DTM topic k and Eu-
roVoc label l is then defined as the cosine similarity
between their representations,

σemb
k,l = cosine sim(embk, embl). (3)

We finally associate each topic with its top I≥1
associated labels as measured by either σimp

k,l or
σemb
k,l .

5 Experiment Settings

Our experiments consist of two parts. The first
empirically evaluates the effectiveness of our pro-
posed topic labelling method (§ 6) and the second
leverages these labels to support a large-scale di-
achronic investigation of the discussion of energy

8’glove-wiki-gigaword-50’ obtained through https://
radimrehurek.com/gensim/downloader.html.

Figure 1: Proportion (%) of topics assigned a particular
EuroVoc entry as top-1 topic label for our three corpora,
using the embedding-based approach.

technologies in the grey- and scientific literature
(§ 7). We use the official DTM implementation.9

Automatic model selection for topic models is an
open research problem, where automatic methods
such as normalized pointwise mutual information
(NPMI) do not always correlate well with human
judgment. As a consequence, especially in non-
technical fields, researchers resort to their domain
knowledge when selecting a parameterization. We
selected a DTM parameterization based on a com-
bination of NPMI scores and modelers’ expectation
in terms of topic variation over time. As a result,
we set the number of topics K=30, and the topic
variance parameter σ=0.05, and use default values
for all other parameters. We applied the DTM with
the above parameters independently to the three
corpora described in § 3. All experiments below
are based on the induced topics.

6 Topic Labeling Evaluation

6.1 Qualitative Analysis
We applied our topic labelling methods to the three
corpora introduced in § 3, and inspected the distri-
bution of top-1 (i.e., most highly associated) labels.
The results for the Embedding method are shown in
Figure 1. We can see that (a) the labels are varied
and cover intuitively relevant aspects of energy-
related discussions in government and academia;
and (b) that the label distribution differs across
corpora in meaningful ways. For example, Renew-
able energy is much more prevalent in the Journals
dataset. Table 4 shows examples of induced top-
ics represented as their 10 most highly associated
terms with Embedding- and TFIDF-based top-2

9https://github.com/blei-lab/dtm
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Strategy TFIDF Embedding Baseline

Top-1 0.46 0.47 0.07
Top-4 0.45 0.47 0.08

Table 3: Human preferences (%) of automatic topic
labeling methods when considering the top-1 or top-4
predicted labels by our methods or a random baseline.

labels.

6.2 Quantitative Evaluation

We evaluated our thesaurus-based topic labeling
approach through human judgements. We obtained
annotations from a group of 36 annotators who are
proficient English speakers. All but one annotator
were not domain experts. We presented annota-
tors with DTM-induced topics, together with three
label options: one based on the TFIDF mapping,
one based on the Embedding-based mapping, and a
randomly selected label. Annotators were asked to
select the most appropriate label in a forced-choice
paradigm. Given that we want to compare what
label best represents a topic when our strategies
differ, we do not include topics in the task where
the embedding and TFIDF labels are automatically
assigned the same label. Over our three models,
this occurs for 23 topics. We evaluated two ver-
sions of our strategy: one where we paired each
topic k with the single most highly associated label
l in terms of labeling score σ∗l,k (top-1); and a sec-
ond where we associate topics with their four most
associated labels, capturing a mixture of informa-
tion (top-4). Each annotation task consisted of a
random sample of 30 out of a total of 90 induced
topics (30 per corpus). We collected 20 sets of an-
notations for the top-4 strategy, and 16 sets for the
top-1. Table 3 summarizes the human preferences.
We can see that both our strategies significantly
outperform the random baseline from filtered top-
ics. In both the top-1 and top-4 strategy we see
no difference between annotator preference toward
either the TFIDF or embedding labelling strategy.
The same pattern holds for each individual corpus.

We acknowledge the simple setup of our human
evaluation, and leave comparison against stronger
models for future work. The user study shows that
non-experts can discern meaningful labels from
our method, and as such complements our intrinsic
qualitative label evaluation (§ 6.1), and our label-
based case study of diachronic energy discussion
which we present next.

7 Energy Discussions in EIA and
Journals over Time

We present a broad analysis of the discussion of
energy technologies in the grey- and scientific liter-
ature, showcasing the utility of our labeling scheme.
We cover the following overarching themes: Elec-
tricity Generation Technologies, Sustainability and
Geopolitics & Economy. We provide representative
selection of DTM-induced topics for each of our
corpora, with their automatically assigned labels,
in Tables 5–7 in the appendix.

7.1 Electricity Generation Technologies

The EIA discusses electricity generation in detail
as part of both AEO and IEO. Figure 2 shows how
selected terms change over time in a topic on elec-
tricity generation in the AEO (2a), labelled as Pro-
duction. We see similar patterns of discussion sur-
rounding various energy sources in the IEO (2b). In
both outlets natural gas and renewables increase in
prevalence over time while coal (AEO) and nuclear
(IEO) decrease. 2c shows the actual changes in gen-
eration (U.S. Energy Information Administration,
2021). These depictions allow us to more objec-
tively assess how these two outlets have forecast,
or not, the evolution of the energy system. The con-
trast between 2a and 2c is particularly illustrative
as we see that the AEO has a somewhat belated
reaction to the increase in new renewables (wind
& solar) generation. The spike in the IEO topic on
renewable energy only towards the end of the last
decade is also remarkable, given that the situation
in Europe, China and other major producers was
similar to the US depicted in Figure 2c.

We also leverage our automatic labelling to un-
cover change within a topic over time. We create
a normalised representation for a topic through its
top 10 most probable words at each timestep, re-
normalized to sum to one, which we call k̂t. We
assign topic labels to each k̂t using the Embedding-
based labelling strategy. Taking again IEO’s topic
”Renewable energy” on electricity generation as
an example, Figure 3 shows how the top-3 labels
assigned to this topic change in prevalence over
time. Initially, we observe renewable energy and
electrical and nuclear industries being discussed
in similar proportions while oil and gas industry
is less prevalent. By 2020 renewable energy is the
most prevalent label for this topic, while Oil and
gas industry is discussed in the same proportion
as electrical and nuclear industries. Our assigned
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Corpus Topic terms Embedding TFIDF

Journals market; price; electricity; paper; competition; company;
investment; risk; reform; industry

1 business ops & trade 1 prices
2 production 2 business ops & trade

AEO resource; oil; production; natural gas; tight; gas; shale gas;
drilling; estimate; technology

1 oil & gas industry 1 oil & gas industry
2 renewable energy 2 production

IEO projection ; energy ; eia ; model ; international ; outlook ;
include ; analysis ; world ; case

1 economic analysis 1 renewable energy
2 research & ip 2 world organisations

Table 4: One topic from each of our corpora, with its top-2 EuroVoc labels as assigned by the embedding and
tfidf-strategy, respectively.

(a) AEO topic 0 (Production). (b) IEO topic 27 (Renewable Energy). (c) Real U.S. electricity generation

Figure 2: Change in word (top) and topic (bottom; blue bar) prevalence over time for two topics related to electricity
generation (a) and (b). (c) shows real generation statistics for the U.S.

Figure 3: Label prevalence change over time for IEO
topic 27 (Renewable Energy) (same as Figure 2b).

labels confirm the trends exhibited by topic-word
prevalences in Figure 2.

7.2 Sustainability

Our automatic topic labels allow us to identify dif-
ferences in discussion between publications. We
combine topics from a model that have the same
top-1 automatically assigned label by summing
their proportions over time.10 We sum again over

10For a topic k, it’s topic proportion at a timestep t, p(k|t),
can be calculated by marginalising over the documents d at

all topics that have the same top-1 label assignment
to achieve an overall proportion for the top-1 label
at timestep t. We present the results in Figure 4.11

We can see that the Journals corpus has a larger
focus on renewable energy and sustainability than
AEO and IEO. The renewable energy and environ-
mental damage top-1 label is much more preva-
lent in discussion in the Journals corpus. We con-
firm this by inspecting the learnt representations
of topics in Journals by the DTM. Emissions are
discussed from various perspectives including fuel
sources (topic 29), China and coal (topic 22) and
emission reduction (topic 4). The respective topics
and their associated labels are shown in Table 5
in the appendix. We also see in topics not explic-
itly surrounding emissions mention of emission-
reducing technologies such as ’chp’ (combined
heat and power) and ’ccs’ (carbon capture and
storage) and increase in ’energy efficiency’ and
’efficiency’ terms over time in many topics, sug-
gesting that even in non-explicit emission topics,
sustainability and emission-reducing technologies
are of increasing importance. This is exemplified

that timestep.
11We utilise the open-source plotting strategy implemented

by Müller-Hansen (Müller-Hansen et al., 2021).
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Figure 4: Comparison of discussions in the AEO, IEO and Journals. Topics were grouped by top-1 label.

Figure 5: Label prevalence change over time for Jour-
nals topic 27 (Electric & nuclear industry).

in Figure 5, a topic on electricity generation with
an early focus on electricity, oil and gas which is re-
placed in later years by renewables and mechanical
engineering, indicating a shift toward sustainable
technological development.

7.3 Economy and Geopolitics

Taking the same strategy we can analyse in Figure
4 the difference in discussion between the three
outlets in terms of economic factors, see topics
prices and business ops & trade. We see a large
discrepancy between the proportion of discussion

in the AEO and IEO corpora compared to the Jour-
nals corpus, and economic discussions are most
prominent in the AEO corpus. This is expected as
the AEO discusses prices and economy from a na-
tional perspective, while the IEO outlet instead dis-
cusses global markets and trade between countries.
Surprisingly, the Journals dataset discusses prices
very little proportional to other themes and does
not discuss trade enough for it ever to be assigned
as a top-1 label in any topic. We also note that
most topics in AEO and IEO, particularly those
related to economy and the oil industry, exhibit
jumps in prevalence around the year 2015. This
coincides with geopolitical events like the Paris Cli-
mate summit and follow-up policies like Obama’s
2016 Clean Power Plan (CPP) in the U.S. Overall,
our analysis again suggests a disconnect between
corpora. Scientific journals show less concern for
economic effects and more about regulatory aspects
compared with the EIA.

8 Conclusions

We presented a novel method for topic labeling
leveraging domain-relevant structured resources.
We empirically showed the quality of our approach
through human evaluation, and through its appli-
cation in a detailed analysis of discussions on en-
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ergy policy over the past 23 years. We highlighted
differences in the discussions around electricity
generation, sustainability and economy between
nationally and internationally focused reports from
the EIA and scientific publications over the same
period. We release our grey literature corpora and
software tool-set to support future research.

There are several areas of future work. In terms
of down-stream analyses, our labelling framework
can support additional comparisons for example
across countries or other agencies such as non-
governmental organizations; and can be extended
to different thesauri, with different focus or level
of detail. For example, EuroVoc captures all of
renewable energy under a single label. Future work
could also involve automatic splitting of assigned
labels for example based on further hierarchical
clustering of keyphrases associated with a label.

References
Shraey Bhatia, Jey Han Lau, and Timothy Baldwin.

2016. Automatic labelling of topics with neural
embeddings. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 953–963, Os-
aka, Japan. The COLING 2016 Organizing Commit-
tee.

David M Blei and John D Lafferty. 2006. Dynamic
topic models. In Proceedings of the 23rd interna-
tional conference on Machine learning, pages 113–
120.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of ma-
chine Learning research, 3:993–1022.

Dallas Card, Chenhao Tan, and Noah A Smith. 2017.
Neural models for documents with metadata. arXiv
preprint arXiv:1705.09296.

Adji B Dieng, Francisco JR Ruiz, and David M Blei.
2019. The dynamic embedded topic model. arXiv
preprint arXiv:1907.05545.

Adji B Dieng, Francisco JR Ruiz, and David M Blei.
2020. Topic modeling in embedding spaces. Trans-
actions of the Association for Computational Lin-
guistics, 8:439–453.
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A Example DTM topics and labels

Tables 5–7 show for each of our corpora a set of
induced topics. For each topic, we also provide the
top-4 assigned EuroVoc by the Embedding and the
TFIDF strategy, respectively. Topic 4, 22 and 29
of the Journals corpus are discussed in the results
section. All other topics were chosen to be a repre-
sentative sample of the discussion of the respective
corpus to which they fall under.
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ID Top 10 Topic terms Embedding TFIDF

0 power; system; heat;
generation;electricity;
chp; energy; electric;
district heating; electrical

renewable energy (0.88);
mechanical engineering (0.86);
electronics and electrical engineering (0.84);
technology and technical regulations (0.83)

electrical and nuclear industries (9.47);
business operations and trade (4.88);
renewable energy (3.67);
organisation of transport (2.0)

4 emission; carbon; reduc-
tion; cost; ghg; green-
house gas; reduce; policy;
result; country

deterioration of the environment (0.79);
environmental policy (0.78);
renewable energy (0.77);
production (0.74)

environmental policy (15.19);
accounting (2.61);
deterioration of the environment (1.4);
economic conditions (1.15)

22 china; carbon; reduction;
sector; reduce; intensity;
result; energy; increase

environmental policy (0.84);
renewable energy (0.82);
production (0.81);
deterioration of the environment (0.81)

environmental policy (13.92);
asia and oceania (3.85);
renewable energy (2.15);
economic conditions (1.71)

28 energy; energy efficiency;
building; system; pa-
per; analysis; indicator;
measure; present; en-
ergy consumption

renewable energy (0.96);
environmental policy (0.86);
production (0.85);
technology and technical regulations (0.85)

renewable energy (22.08);
world organisations (5.76);
electrical and nuclear industries (3.9);
building and public works (1.86)

29 engine; fuel; emission; in-
jection; diesel; co; com-
bustion; high; low; in-
crease

mechanical engineering (0.84);
renewable energy (0.8);
electrical and nuclear industries (0.8);
oil and gas industry (0.8)

environmental policy (4.61);
oil and gas industry (3.32);
mechanical engineering (2.67);
electrical and nuclear industries (1.28)

Table 5: Five example topics induced from the Journals corpus, with their top-4 EuroVoc labels (scores) as
assigned by the Embedding and TFIDF-strategy, respectively.

ID Top 10 Topic terms Embedding TFIDF

1 coal; ton; production;
cost; percent; productiv-
ity; export; u.s; increase;
region

oil and gas industry (0.89);
coal and mining industries (0.88);
production (0.81);
renewable energy (0.77)

coal and mining industries (16.94);
production (4.35);
regions and regional policy (2.82);
accounting (2.19)

17 gasoline; ethanol; gallon;
fuel; mtbe; sulfur; blend;
motor; percent; require-
ment

oil and gas industry (0.85);
renewable energy (0.72);
food technology (0.7);
deterioration of the environment (0.69)

oil and gas industry (2.69);
electrical and nu clear industries (0.81);
taxation (0.35);
organisation of transport (0.19)

19 vehicle; fuel; sale; per-
cent; economy; new; in-
crease; hybrid; car; stan-
dard

organisation of transport (0.88);
production (0.88);
prices (0.86);
marketing (0.83)

economic conditions (8.02);
organisation of transport (5.56);
marketing (5.1);
land transport (3.21)

21 emission; carbon; co;
ton; metric; ghg; car-
bon dioxide; energy; re-
late; percent

renewable energy (0.78);
oil and gas industry (0.76);
deterioration of the environment (0.74);
electrical and nuclear industries (0.73)

environmental policy (11.52);
renewable energy (2.28);
deterioration of the environment (1.24);
technology and technical regulations (1.21)

29 cost; market; electricity;
price; competitive; cus-
tomer; state; utility; trans-
mission; power

prices (0.91);
business operations and trade (0.91);
production (0.9);
accounting (0.9)

prices (26.58);
business operations and trade (14.09);
accounting (5.78);
environmental policy (3.57)

Table 6: Five example topics induced from the AEO corpus, with their top-4 EuroVoc labels (scores) as assigned
by the Embedding and TFIDF-strategy, respectively.
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ID Top 10 Topic terms Embedding TFIDF

5 coal; import; ton; export;
increase; percent; world;
project; trade; coke coal

oil and gas industry (0.9);
coal and mining industries (0.88);
production (0.82);
renewable energy (0.77)

coal and mining industries (15.34);
business operations and trade (8.08);
world organisations (1.28);
deterioration of the environment (1.18)

6 natural gas; cubic; foot;
gas; lng; reserve; increase;
percent; year; production

oil and gas industry (0.88);
renewable energy (0.85);
production (0.84);
deterioration of the environment (0.82)

oil and gas industry (2.01);
production (2.01);
environmental policy (1.01);
agricultural activity (0.99)

9 coal; china; world;
percent; use; increase;
consumption; share; total;
btu

production (0.87);
business operations and trade (0.83);
oil and gas industry (0.83);
prices (0.83)

coal and mining industries (11.93);
business operations and trade (4.49);
asia and oceania (2.47);
world organisations (2.1)

25 emission; sulfur; reduce;
reduction; standard; fuel;
new; require; target; diox-
ide

deterioration of the environment (0.82);
renewable energy (0.8);
environmental policy (0.8);
electrical and nuclear industries (0.78)

environmental policy (10.89);
technology and technical regulations (2.3);
oil and gas industry (1.43);
asia and oceania (0.94)

27 generation; natural gas;
renewable; nuclear; capac-
ity; electricity; cost; in-
crease; coal; power

renewable energy (0.91);
electrical and nuclear industries (0.88);
production (0.87);
oil and gas industry (0.84)

electrical and nuclear industries (8.21);
coal and mining industries (2.97);
accounting (2.36);
demography and population (1.75)

Table 7: Five example topics induced from the IEO corpus, with their top-4 EuroVoc labels (scores) as assigned
by the Embedding and TFIDF-strategy, respectively.
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Abstract 

Advancements in Natural Language 
Generation have raised concerns on its 
potential misuse for deep fake news. Grover 
is a model for both generation and detection 
of neural fake news. While its performance 
on automatically discriminating neural fake 
news surpassed GPT-2 and BERT, Grover 
could face a variety of adversarial attacks to 
deceive detection.  In this work, we present 
an investigation of Grover’s susceptibility 
to adversarial attacks such as character-
level and word-level perturbations. The 
experiment results show that even a 
singular character alteration can cause 
Grover to fail, affecting up to 97% of target 
articles with unlimited attack attempts, 
exposing a lack of robustness. We further 
analyse these misclassified cases to 
highlight affected words, identify 
vulnerability within Grover’s encoder, and 
perform a novel visualisation of cumulative 
classification scores to assist in interpreting 
model behaviour. 

1 Introduction 

Online disinformation has become a crucial issue 
in current society and has been the focus of 
extensive study in recent years (Buning, 2018; 
Fletcher, 2018; Zerback, 2020). Fake news, one 
form of online disinformation, can deceive people 
with intent of monetary gain, political slander, or 
entity discreditation (Quandt et al., 2019). While 
current sources of fake news are mainly derived 
from human hand, recent developments in Natural 
Language Generation (NLG) (Radford, 2018, 
2019; Brown, 2020) have made it possible to 
produce neural fake news 1  at scale. The key 
problem with this technology is that it is harder for 

 
1From here on out, we will use ‘neural fake news’ and 
‘machine-generated fake news’ interchangeably. 

humans to distinguish machine-generated text from 
human-produced text (Heaven, 2020; Hao, 2020). 

To counter the rising threat of neural fake news, 
an automatic discriminator has been developed that 
can serve as a defence mechanism. In 2019, Grover 
(Zellers et al., 2019) (Generating aRticles by Only 
Viewing mEtadata Records), a neural fake news 
generator and discriminator, was released to the 
public. As a generator, it generates formal news 
articles, (including title, domain, authors, date) 
with given contextual metadata. As a discriminator, 
it detects the difference between machine and 
human-produced articles. By utilising articles 
produced by the generator, Grover’s discriminator 
achieved 92% accuracy while detectors based deep 
contextual language models including GPT-2 and 
BERT achieved 73% (Zellers et al., 2019).  

Grover can be misused to mass produce 
plausible disinformation by adversaries. For 
example, Grover generated propaganda articles 
were rated as more trustworthy than human-
produced ones of the same context by human 
judges (Zellers et al., 2019). Given this alarming 
ability, the capability to auto-detect the differences 
between machine and human-produced articles can 
reduce the risk of neural fake news spreading 
online. 

Following the establishment of text-based 
perturbations by Jia and Liang (2017), studies on 
robustness interpretability through adversarial 
examples have grown rapidly through the Natural 
Language Processing (NLP) community (Vadillo, 
2021; Zafar, 2021; Yuan, 2021). Since then, there 
have been several attempts to manipulate NLP 
models by character-level alterations on its input 
text. For example, Belinkov and Bisk (2017) 
demonstrated that synthetic and natural noise can 
cause state-of-the-art language translation models 
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to fail. Gao (2018) also proposed DeepWord-Bug, 
a novel algorithm for small character perturbations 
causing drastic classification inaccuracies in tasks 
such as text classification, sentiment analysis, and 
spam detection. These studies conducted character-
level perturbations to identify a lack of robustness 
within various mainstream language models.  

In a similar manner, Grover, when acting as a 
defence mechanism against neural fake news, can 
face heavy adversarial scrutiny. Thus, following the 
direction of recent studies (Belinkov and Bisk, 
2017; Gao, 2018), we conducted analyses through 
various adversarial attacks including character-
level and token-level perturbations. 

This paper presents an investigation of Grover to 
examine its performance change on various 
adversarial attacks. In our assessment, we find that 
Grover is highly susceptible to adversarial attacks 
with around 93% of target articles vulnerable to 
misclassification after alteration. Analysing the 
effects of successful perturbations, we identify a 
weakness within the model’s encoding framework 
which influences Grover’s classification scoring, 
with recorded score variations of 0.74 on average. 
In this work, we introduce our novel visualisation 
of cumulative classification score on various 
unaltered/altered articles and explore classification 
score polarity induced by adversarial attacks. 

This paper is organised as follows. Section 2 
accounts related work and section 3 reports a 
general summary of Grover. Section 4 presents the 
experiments of adversarial attacks. Section 5 
conveys the results of the experiments along with 
error analysis. Section 6 presents cumulative 
classification score visualisation and analysis on 
extreme polarity change. Finally, section 7 presents 
our concluding discussion.  

2 Related Work 

Recent studies on adversarial attacks in NLP follow 
a white-box approach leveraging accessible 
information from within a model as surveyed by 

Zhang (2020). Many studies have utilised a white-
box gradient-based approach for various attacks 
such as character-based alterations (Ebrahimi, 
2017, 2018; Liang, 2017), word-based alterations 
(Cheng, 2020; Liang, 2017; Neekhara, 2018), and 
word-based concatenations (Wallace, 2019; 
Behjati, 2019). Blohm (2018) used white-box 
model attention to attack a reading comprehension 
model as well as a question answering model.  

    Contrary to the white-box approach, Wolff 
and Wolff (2020) adopted a black-box approach 
and performed homoglyph and misspelling attacks 
on a variety of neural text classifiers including 
GPT-2, GLTR, RoBERTa, and Grover. They 
conducted adversarial attacks on 20 samples of 
Machine articles to draw comparison between 
leading neural classifiers and Grover yet refrain 
from exploring the results of Grover’s 
classification in detail. Our work includes the 
attack concepts from Wolff and Wolff’s work 
(2020) but explore singular applications of the 
attacks, rather than multiple applications. We also 
focus our analysis solely on Grover, studying the 
effect of the attacks produced on Grover, and its 
potential fragile points within the framework. 

Visualising a language model’s outcome to 
increase a model’s interpretability is another recent 
trend in NLP. Gehrmann (2019) introduced GLTR, 
a visualisation tool (using statistical methods) that 
can detect generation artifacts across a sample and 
display its findings through coloured annotation on 
the input to support a human’s fake text detection. 
Stemming from this concept, we propose a novel 
visualisation approach through the plotting of 
cumulative classification scores. Our visualisation 
method aims to help a user to interpret how Grover 
is affected at each word vector and highlight key 
alteration artifacts within an article. 

3 Grover 

Grover consists of two components: a generator 
and a discriminator.  

Figure 1: A diagram of Grover examples for article generation. Note ~ Fig 2 from ‘Defending Against Neural Fake News’ by 
Zellers et al., 2019.  
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3.1 Generator 
 
The generator component of Grover comprises a 
novel architecture with adapted components of 
GPT-2. Grover, as shown in Figure 1, can generate 
the domain, date, headline, body, or author of a 
news article, given any subsetted combination of 
these fields. The generator comes in three versions 
– Grover-Base, consisting of 12 layers and 124 
million parameters, Grover-Large, consisting of 24 
layers and 355 million parameters, and Grover-
Mega, with 48 layers and 1.5 billion parameters 
matching GPT-2’s architecture; each trained on 
successively larger datasets (comprised of real 
news articles scraped from common crawl2). 
 
3.2 Discriminator 
 
The discriminator component of Grover acts as a 
detector of neurally generated articles. Utilising 
articles produced by the generator, the 
discriminator is trained to differentiate between 
machine-generated articles and human-produced 
articles. Articles can be classified on their own or 
with additional metadata such as domain, date, 
headline, and author, that aids prediction strength. 

4 Experiments 

The functionality of Grover’s discriminator, given 
either machine-generated articles (labelled as 
Machine) or human-produced articles (labelled as 
Human), is to produce a classification label of 
‘Human’ or ‘Machine’ on each article. Input 
articles contain the body of an article, with or 
without metadata (title, domain, date, or authors). 

To assess Grover’s robustness, we conducted 
experiments on the discriminator’s classification 
accuracy when classifying altered (adversarial 
attacked) Machine articles. Minor alterations 
(altering only one character or one word in a whole 
news article) have been performed on a subset of 
Machine articles applying four methods of 
adversarial attacks including (1) upper/lower flip, 
(2) homoglyph, (3) whitespace, and (4) 
misspelling. After each attack, the altered articles 
were submitted to Grover’s discriminator for 

 
2https://commoncrawl.org/ 
3https://github.com/rowanz/grover/tree/master/discriminatio
n  

reclassification and the classification results were 
investigated. 
 

4.1  Discriminator Setup 

For experiments, the publicly available pre-trained 
Grover Mega discriminator was used; the set-up 
contains Grover Mega config file and necessary 
checkpoints3. We ran the discriminator in its GPU 
configuration. 
 

4.2 Dataset 
 

Grover provides a dataset containing 12,000 
articles with metadata4; it consists of 8,000 Human 
articles (RealNews dataset5), and 4,000 Machine 
articles, which were generated using Grover’s 
generator (Grover-Mega). Submitting this dataset 
to Grover’s discriminator, we gain the predictions 
seen in Table 1. From the prediction we obtain a 
total accuracy of 0.93, a precision score of 0.85, a 
recall score of 0.94, and a F1 score of 0.89. 
 

 
 

 
 

 
For our experiments, we sampled 100 articles 

with the highest true positive (TP) classification 
scores produced by the discriminator. This will be 
referenced as 100 Machine article subset. All 
articles selected have classification score over 0.49 
where 0.5 is the maximum score an article could be 
assigned for a ‘Machine’ classification. 
 

4gs://grover-
models/discrimination/generator=medium~discriminator=gr
over~discsize=medium~dataset=p=0.96/checkpoint 
5https://github.com/rowanz/grover/tree/master/realnews 
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(649) 
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FN 

(249) 

TN 
(7,351) 

Table 1: Confusion Matrix of 12,000 articles classified 
by Grover Mega discriminator. True Positives (TP). 
False Positives (FP). False Negatives (FN). True 
Negatives (TN). 
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4.3  Adversarial Attack Parameters 
 

As news articles are written to a high level of 
coherency with minimal punctual mistakes or 
grammatical errors, an adversary would want to 
limit article alteration to preserve readability and 
ensure a human reader does not question the 
article’s credibility. To simulate this mindset, we 
limit the application of an attack to only a single 
change, such as one character or one-word 
alteration on an article, iterating the attack through  
the entirety of an article to assess all possible 
combinations for each attack’s relative application.  
As demonstrated in Table 2, the following four 
types of adversarial attacks were applied for the 
experiments: 

 
(1)  Upper/Lower Flip: Uppercasing or 

lowercasing of a letter originally 
lowercased or uppercased respectively. 
 

(2) Homoglyph: Replacement of certain 
characters with their homoglyph 
equivalent from either the Greek or 
Cyrillic alphabet6. 
 

(3) Whitespace: Removal of a space between 
adjacent words. 

 
6We use 19 different Greek substitutions and 30 different 
Cyrillic substitutions. All substitutions can be found in the 
appendix. 

 
 

(4) Misspelling: Replacement of certain 
words coinciding with a list of commonly 
misspelled English words on Wikipedia7. 

 
4.4 Adversarial Attack Results 
. 
We present the results from our adversarial attack 
experiments on Grover. 

As shown in Table 3, character-level attacks 
(U/L Flip and Homoglyph) create a higher number 
of altered articles compared to word-level attacks 
(Whitespace and Misspelling). Based on the 
number of alterations, the Misspelling attack 
achieved the highest misclassification rates (nearly 
10%) compared to the other three attacks which got 
a relatively lower rate of 2-4%.  

Surprisingly, across the 100 Machine article 
subset, Homoglyph, U/L Flip and Misspelling 
attacks affected 97%, 96% and 94% of the target 
articles, respectively. Even the simplest attack, 
Whitespace attack, could affect 85% of the 100 
target Machine articles. This suggests that Grover 
is highly susceptible to adversarial efforts. 

Table 4 shows the ten most common words that 
affected (flipped the classification from ‘Machine’ 
to ‘Human’) Grover’s discriminator during 
adversarial attacks. Around 20% of 

7https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common
_misspellings/For_machines 

    

Attack Alterations Misclassifications (Proportion) Affected Articles 

U/L Flip 212,224 4,295 (2.02%) 96% 
 Homoglyph 157,532 6,914 (4.39%) 97% 
Whitespace 46,036 1,447 (3.14%) 85% 
Misspelling 43,789 4,281 (9.78%) 94% 

Table 3: Classification results of all adversarial examples. Alterations indicate how many iterations of the 
specified attack was conducted across the dataset. Affected Articles indicate how many articles, from the 100 
Machine target articles, had one or more misclassifications resulting from an alteration.  

Original “A Romanian hospital will face a fine for leaving a towel in a patient's stomach…” 
Whitespace “A Romanian hospital willface a fine for leaving a towel in a patient's stomach…” 

Upper/Lower Flip “A Romanian hospital will face a fine for leavIng a towel in a patient's stomach…” 
Misspelling “A Romanian hospital will face a fine for leaving a towel in a patient's stomache…” 
Homoglyph “A Romanian hospital will face a finе* for leaving a towel in a patient's stomach…” 

Table 2: Adversarial attacks and their respective change on an article.  *The word ‘Fine’ in the homoglyph 
example contains Cyrillic ‘e’ ~ Unicode: U+x0435 compared to the regular Latin ‘e’ ~ Unicode: U+0065. 
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misclassifications were caused by altering the 
words ‘that’, ‘the’ and ‘to’. Noticeably, the majority 
of the affected words are stop words. 
 
4.5 Input Encoding 
 
We observed in general which words were altered 
to elicit a misclassification. To assess how 
character-level perturbations affect Grover, we 
examined how the model interprets and scores a 
given input. 

Grover uses a byte-pair encoder (BPE) to pre-
process input data. BPE (Senrich et al., 2015) splits 
a given input into its largest subword units based on 
character co-occurrence frequency distribution and 
assigns each unit a pre-determined pairing ID. This 
turns a tokenised input into a vector of numbers. 

Previously, BPEs have been found to be lacking 
in robustness when facing character-level 
perturbations (Heigold et al., 2017). In Table 5 we 
can see the effect that the upper/lower flip attack 
has on a particular sequence from one of the 
articles. The uppercasing of the letter ‘i’ in 
‘hospital’ changes the subword unit allocation. 
Originally encoded as [4437], ‘hospItal’ gets 
broken down into ‘hosp’,’It’,’al’ then encoded into 
[10497, 1027, 283]. 
 

 
5https://www.nltk.org/ 

5 Visual Analysis 

Grover produces a classification score at each word 
vector, as it processes the input from left to right. If 
we successively and cumulatively feed Grover 
word vectors in sequential order, we can obtain a 
classification score at each step, allowing for a 
cumulative classification score to be recorded. 
Using the classification scores recorded at each 
increment as word vectors are appended to the 
accumulating input, we can visualise how these are 
perceived by Grover over the course of an entire 
input. 

 

5.1 Cumulative Classification Score 
Visualisation 

 
Human Articles: Figure 2 illustrates the 
cumulative classification score of five randomly 
selected Human articles from the original 8,000 
Human article dataset. At the initial processing of 
the sequence, all articles start at a strong ‘Machine’ 
classification. As more of the respective input is 
processed, we see the articles' classification scores 
increase toward ‘Human’ over time. It is observed 
that cumulative classification scores often plateau 
with greater encoded sequence lengths. 
 

Affected 
Word Frequency Proportion POS 

that 1639 8.92% IN 
the 1533 8.34% DT 
to 516 2.81% TO 

and 334 1.82% CC 
with 321 1.75% IN 
in 298 1.62% IN 
of 279 1.52% IN 
for 257 1.40% IN 

from 236 1.28% IN 
The 202 1.10% DT 

Table 4: Statistics of affected words from all 
misclassified inputs. POS is the part-of-speech tag for 
that respective word obtained from NLTK5. IN ~ 
Preposition, DT ~ Determiner, TO ~ To, CC ~ 
Coordinating Conjunction. Note we only take the top 
10 most occurring words within the misclassified 
subset. 

Table 5: An original encoding sequence compared to 
the same encoded sequence after a single character 
alteration. 

Original Vector IDs Altered 

A 33 A 

Romanian 34345 Romanian 

  10497 hosp 

hospital 4437 1027 It 

  283 al 
will 482 will 
face 1987 face 

a 258 a 

fine 3735 fine 

for 330 for 
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Machine Articles: Figure 3 shows the cumulative 
classification scores of five randomly selected 
Machine articles from our target dataset. As seen in 
the visualisation of Human articles, the beginning 
of each sequence starts at a strong ‘Machine’ 
classification. Over the early stages of the 
sequence, we see high classification score variance 
due to the limited word vectors processed. Over 
time, the selected Machine articles tend to return to 
a strong ‘Machine’ classification, plateauing 
toward the end of the encoded sequence. 
 

False Negative (FN) Case: Figure 4 presents 
the cumulative classification score of one of the 
misclassified articles from our experiments. The 
red line indicates the location of the adversarial 
attack within the encoded sequence. In this 
example, the input word ‘that’ was transformed into 
‘thaT’ by U/L Flip attack which uppercased the 
second ‘t’. At the point where Grover processed the 
altered word vector, the classification score of the 
article dropped dramatically, falling a total of 0.98. 
This large variation in classification score due to 
alteration will be discussed in terms of ‘Extreme 
Polarity Change’ in section 5.2. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
True Positive (TP) Case: Figure 5 demonstrates 

the cumulative classification score of a Machine 
article that had its classification unaffected after an 
adversarial attack. Again, the red line indicates the 
location of the attack. In this example, the input 
word, ‘These’ was altered to ‘these’ by the U/L Flip 
attack which lowercased the first ‘T’. This 
alteration causes a very minimal change in 
classification score at the site of alteration. 
 
 
5.2 Extreme Polarity Change 

 
From visualising a FN case’s cumulative 
classification scores, we observed a large change in 
classification score at the point of an adversarial 
attack. To analyse whether all FN cases show a 
drastic variation in classification score, we took a 
random sample of 500 FN case articles and 500 TP 
case articles from each of the four adversarial 
attacks. In total, we examined the 4,000 articles’ 
classification score at each point of the adversarial 
attack. The average score variation of each subset 
is shown in Table 6. 

Figure 2: Comparison of cumulative classification 
scores between five Human articles. 

Figure 3: Comparison of cumulative classification 
scores between five Machine articles. 

Figure 4: Cumulative classification scores of 
misclassified altered Machine article after the U/L Flip 
attack.  

Figure 5: Cumulative classification scores of correctly 
classified altered Machine article after the U/L Flip 
attack. 
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 Average Score Variation 
Attack TP Subset FN Subset 

U/L Flip 0.12 0.76 
Homoglyph 0.17 0.81 
Whitespace 0.04 0.70 
Misspelling 0.21 0.69 
Average 0.14 0.74 

 
 
 

 
The FN cases had a much higher average 

variation in classification score compared to the TP 
cases as shown in Table 7. This implies that 
particular alterations caused Grover's classification 
score to drop dramatically (at the site of an attack) 
ultimately affecting the final prediction produced 
by Grover. 

6 Discussion 

In this study, the robustness of Grover’s 
discriminator was assessed through various 
adversarial attacks. We found that even a singular 
character change can cause the model to fail. 
Through analyses of successful perturbations, it 
was found that Grover’s encoder is highly sensitive 
to selected perturbations, causing downstream 
effects in classification assignment.  

We conducted a broad implementation of 
adversarial attacks and identified vulnerabilities in 
single alterations on certain types of words. These 
results outline potential dependencies within 
Grover’s language modelling which could be 
potentially extorted by adversaries through 
implementation of multiple instances of an 
adversarial attack across an article or an adversary 
targeting and affecting more than one key word 
outlined in Table 4. 

To the best of our knowledge, the proposed 
visualisation of cumulative classification scores are 
novel, allowing interpretation of model behaviour, 
as it gives a user the ability to visually understand 
the effects that each word vector has at its relative 
point of inference as well as the effects that 
alterations may produce on the classification 
prediction. 

Our findings open various paths for further 
exploration. Our adversarial attacks’ focus was 
exclusively directed onto the body of an article. 
One path for future work could consist of focussing 
adversarial attacks on the metadata of an article, 

further exploring Grover’s robustness. Our 
visualisation of cumulative classification scores 
highlighted the effects some character-level 
alterations had on the classification score of an 
article. The large score variations noted could allow 
for work to be done in the field of adversarial attack 
detection. Finally, the nature of our assessment was 
broad and based on a black-box approach. 
Furthering our work, the undertaking of a white-
box approach could be performed to explore model 
interpretability. 
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Appendix A: Full list of Latin characters with their respective Greek and Cyrillic substitutions and all respective 
character Unicode.
  

Original (Basic Latin) Greek Cyrillic 
Letter ~ Unicode Letter ~ Unicode Letter ~ Unicode 

A ~ U+0041 a ~ U+0061 Α ~ U+x0391  А ~ U+x0410 а ~ U+x0430 
B ~U+0042 b ~ U+0062 Β ~ U+x0392  В ~ U+x0412 Ь ~ U+x044C 
C ~ U+0043 c ~ U+0063 Ϲ ~ U+x2CA3 ϲ ~ U+x03C2 С ~ U+x0421 с ~ U+x0441 
E ~ U+0045 e ~ U+0065 Ε ~ U+x0395  Е ~ U+x0415 е ~ U+x0435 
F ~ U+0046  Ϝ ~ U+x03DC    
H ~ U+0048 h ~ U+0068 Η ~ U+x0397  Н ~ U+x041D һ ~ U+x04BB 
I ~ U+0049 i ~ U+0069 Ι ~ U+x0399  І ~ U+x0406 і ~ U+x0456 
J ~ U+004a j ~ U+006a   Ј ~ U+x0408 ј ~ U+x0458 
K ~ U+004b  Κ ~ U+x039A  К ~ U+x041A  
M ~ U+004d  Μ ~ U+x039C  М ~ U+x041C  
N ~ U+004e  Ν ~ U+x039D    
O ~ U+004f o ~ U+006f Ο ~ U+x039F ο ~ U+x03BF О ~ U+x041E о ~ U+x043E 
P ~ U+0050 p ~ U+0070 Ρ ~ U+x03A1  Р ~ U+x0420 р ~ U+x0440 
S ~ U+0053 s ~ U+0073   Ѕ ~ U+x0405 ѕ ~ U+x0455 
T ~ U+0054  Τ ~ U+x03A3  Т ~ U+x0422  
V ~ U+0056 v ~ U+0076  ν ~ U+x03BD Ѵ ~ U+x0474 ѵ ~ U+x0475 

 w ~ U+0077    ѡ ~ U+x0461 
X ~ U+0058 x ~ U+0078 Χ ~ U+x03A7  Х ~ U+x0425 х ~ U+x0445 
Y ~ U+0059 y ~ U+0079 Υ ~ U+x03A5  Ү ~ U+x04AE у ~ U+x0443 
Z ~ U+005a z ~ U+007a Ζ ~ U+x036    
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Abstract

Generating long and coherent text is an impor-
tant and challenging task encompassing many
application areas such as summarization, doc-
ument level machine translation and story gen-
eration. Despite the success in modeling intra-
sentence coherence, existing long text gener-
ation models (e.g., BART and GPT-3) still
struggle to maintain a coherent event sequence
throughout the generated text. We conjecture
that this is because of the difficulty for the
model to revise, replace or revoke any part that
has been generated by the model.

In this chapter, we present a novel semi-
autoregressive document generation model ca-
pable of revising and editing the generated text.
Building on recent models by (Gu et al., 2019;
Xu and Carpuat, 2020), we propose document
generation as a hierarchical Markov decision
process with a two level hierarchy, where the
high and low level editing programs generate
and refine the document. We train our model
using imitation learning and introduce roll-in
policy such that each policy learns on the out-
put of applying the previous action. Experi-
ments applying the proposed approach convey
various insights on the problems of long text
generation using our model. We suggest var-
ious remedies such as using distilled dataset,
designing better attention mechanisms and us-
ing autoregressive models as a low level pro-
gram.

1 Introduction

Generating long and coherent text encompass vari-
ous tasks such as summarization, story generation,
document level machine translation and document
level post editing. Each task is characterised by
modelling long range dependencies to make the
document coherent as well as modelling a high
level plot to make the document thematically con-
sistent (Fan et al., 2018). This is challenging as the
models need to plan content, while producing local

words consistent with the global context in a timely
manner.

Recent work on autoregressive generation mod-
els, such as GPT-3 and BART (Lewis et al., 2019;
Brown et al., 2020), have shown impressive per-
formance in generating short fluent text with a
maximum length ranging from 150 to 350 tokens
(Bosselut et al., 2018; Shen et al., 2019; Zhao et al.,
2020b). But applying the same model to generate
longer passages of text (e.g., 1000 tokens) has re-
sulted in syntactic and semantic errors throughout
the document requiring extensive human curations
(Tan et al., 2020). These massive language mod-
els are usually pre-trained using large corpora of
generic text, and then fine-tuned with small domain-
specific data. Most of the time, the models are not
publicly available to adapt to arbitrary desired do-
mains.

On the other hand, recent non-autoregressive ap-
proaches allow generation to be done within a much
smaller number of decoding iterations (Gu et al.,
2017; Wang et al., 2019; Kasai et al., 2020). But
due to its problems with modelling dependencies
among the tokens, the approach still lags behind its
autoregressive counterparts and has not yet been ap-
plied to long text generation (Zhou et al., 2019; Gu
and Kong, 2020). In both of these model families,
the length of generated sequences is either fixed or
monotonically increased as the decoding proceeds.
This makes them incompatible with human-level
intelligence where humans can revise and edit any
part of their generated text.

In this paper, we present a novel semi-
autoregressive document generation model capa-
ble of revising and editing the generated text. We
build on recent models by (Gu et al., 2019; Xu
and Carpuat, 2020), who framed generation as a
Markov decision process (Garcia and Rachelson,
2013) and showed that iteratively refining output se-
quences via insertions and repositions yields a fast
and flexible generation process for machine trans-

128



lation and automatic post editing task. We extend
their model by proposing document generation as
a hierarchical Markov decision (Liu et al., 2018)
process with a two level hierarchy. The high level
program produce actions aH ∈ {reposition, insert,
update} which tries to capture global context and
plan content while the low level program produce
actions aL ∈ {reposition, insert} to generate local
words in a consistent and timely manner. Due to
unavailability of large-scale data to train our model,
we propose a noising process to simulate the error
patterns observed in document level tasks such as
redundancy of words, key information omission
and disordered sentences. The noising process can
be reversed by applying a set of high and low level
actions to get back the original document. This
serve as an efficient oracle to train our model using
imitation learning (Hussein et al., 2017). The roll-
in policy is defined such that each policy learns on
the output of applying the previous action.

2 Problem formulation

2.1 Hierarchical Markov decision process

We cast document generation and refinement as
a hierarchical Markov decision process (HMDP)
with a two level hierarchy. The high level program
is defined by the tuple (D,AH ,E ,R,d0) where
a state d ∈ D corresponds to a set of sequences
d = (s1,s2, ...,sL) up to length L, and d0 ∈ D is
the initial document. The low level program cor-
responds to the tuple (S ,AL ,E ,R,s0) where a
state s ∈ S corresponds to a sequence of tokens
s = (w1, w2, ..., wn) from the vocabulary V up to
length n, and s0 ∈S is the initial sequence.

At any time step t , the model takes as input dt−1,
the output from the previous iteration, chooses an
action aH ∈ AH to refine the sequence into dt =
E (dt−1, aH ), and receives a reward rt =R(dt). The
policy πH maps the input sequence dt−1 to a proba-
bility distribution P (AH ) over the action space AH .
A high level program may call a low level program
with the initial input s0. It is similar to high level
program with its set of actions aL ∈ AL , reward
function rt = R(st) and the policy πL . Instead of
sequences, the low level actions are applied to indi-
vidual tokens. This results in a trajectory σ :=
{d1, a1

H ,τ1,r1,d2, ....,dN, aN
H ,τN ,rN ,dN+1} which

is the concatenation of high-level trajectory τH :=
(d1, a1

H ,r1,d2, a2
H ,r2, ....,dH+1) and the low level

trajectory τL := (s1, a1
L ,s2, a2

L , ....,sT+1). We define
a reward function R = di st (D,D∗) which measures

the distance between the generation and the ground-
truth sequence. We use Levenstein distance (?) as
our distance metric.

2.2 HMDP policies:

Following the formulation of HDMP, we define
a high level policy πH : d −→ AH , as well as the
low level policy πL : s −→ AL as a mapping from
state to actions. The high level actions consist of
aH ∈ {r eposi t i on, i nser t ,upd ate} and the low
level actions consist of aL ∈ {r eposi t i on, i nser t }.

INSERTH: The insertion policy reads the in-
put document d consisting of set of sequences
{s1,s2, ...si,si+1, ...sL}, and for every possible slot
i , i +1, the insertion policy πi ns

H (x|i ,d) makes a bi-
nary decision which is 1 (insert here) or 0 (do not
insert). For each insertion position, low level MDP
is called to generate the new sequence from scratch.
This allows the model to generate a sentence con-
ditioned on the surrounding context resulting in
outputs that are consistent with the theme and plot
of the document.

UPDATEH: The update policy reads the in-
put document d, consisting of set of sequences
{s1,s2, ...si,si+1, ...sL}, and for every sequence po-
sition i , the update policy π

upd
H (x|i ,d) makes a

binary decision which is 1 (update this sentence)
or 0 (do not update). In order to make the update,
the low level MDP is called to refine the given se-
quence. This allows the model to correct mistakes
and improve the sentences generated by the insert
policy.

REPOSITIONH: The reposition policy reads in
the document d consisting of set of sequences
{s1,s2, ...si,si+1, ...sL}. For every sentence position
i , the reposition policy π

r ep
H (x|i ,d) makes a cate-

gorical decision between 0 and L+1 where L is the
number of sequences in the document. The given
sequence is repositioned to the output value. If x
is 0 then the sequence is deleted. This policy al-
lows the model to observe the complete document
and make it more coherent by repositioning and
deleteing sentences.

INSERTL,REPOSITIONL: The Low level MDP
is made up of actions reposition and insert. They
work in a similar manner as defined in the paper
(Gu et al., 2019; Xu and Carpuat, 2020) with the
difference that the conditioning context contains
document d along with the sentence s. Therefore
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the reposition policy at the word level is defined
by π

r ep
L (x|i ,y,d). The insertion policy is made

up of a placeholder and token prediction policy
as defined by π

pl h
L (x|i ,y,d) and πtok

L (x|i ,y,d) re-
spectively. The placeholder policy first determines
the number of words that need to be inserted at a
given position. Special <mask> tokens are then
inserted. These <mask> tokens are filled by the
token prediction policy.

2.3 Generative process:
The generative process is outlined in algorithm 1.
The combination of high and low level policies can
either generate a document from scratch or edit a
given initial document. The insertion and update
policy calls the low level program in Lines 6 and 11.
Line 2 in algorithm 2 builds the initial scaffolding
which is later used by the algorithm for its set of
actions. If the low level program is called by the
high level update action the initial scaffolding is
created by concatenating the sentences identified
by the high level update policy. Otherwise in case
of high level insert action, it is the concatenation of
empty sentences. Although one iteration is made
up of multiple stages, within each stage an action
is performed in parallel.

3 Hierarchical Transformer

3.1 Architectures
Our model is based on the Transformer encoder-
decoder architecture (Vaswani et al., 2017). We ex-
tract the hidden representations (h1, ...,hn) to make
the policy predictions. We extract sentence rep-
resentations by concatenating all sentences with a
special <sep> token. The hidden states correspond-
ing to these special tokens are then used as sentence
representation by the policies. Along with position
embeddings for individual tokens, we also intro-
duce segment embeddings for sentences, which
identify the position of a sentence in a document.
We show the illustration of the proposed model in
Figure 1.

3.2 Policy classifiers
We implement policies as classifiers whose predic-
tion depends upon the hidden state representations
generated by the transformer layers.

Reposition classifier: The reposition classifier
gives a categorical distribution over the index of
the input, where the input can be the representa-
tion of a sentence or a word. The input sequence

is then repositioned accordingly. Along with re-
ordering, this classifier can also perform deletion
by predicting special delete token. This classifier
is implemented as:

π
r ep
θ

(r |si ,d) = softmax(hi · [b,e1, ...,en])

for i ∈ {1..n} where e can be the embedding of
a sentence or token and b ∈ Rdmodel is a special
token to predict deletion. Note that in case of low
level program, we also condition on the complete
document. This is done by having cross-attention
on the hidden representation of the sentences.

Insertion classifier: The high level insert clas-
sifer scans over the consecutive sentences and make
a binary decision to insert or not.

πi ns
θ (p|si ,d) = softmax([hi ;hi+1] ·A)

for i ∈ {1..n} and A ∈R2×dmodel is a parameter to be
learned. The low level insert classifier is made up
of placeholder insertion followed by token inser-
tion. The placeholder classifier predicts the num-
ber of tokens to be inserted at every consecutive
position pairs, by casting the representation to a
categorical distribution

πi ns
θ (p|wi ,s,d) = softmax([hi ,hi+1] ·B)

for i ∈ {1..n} and B ∈R(kmax+1)×(2dmodel) is a parame-
ter to be learned. Following (Gu et al., 2019), kmax

is 255. Token classifier then fill the placeholders

πtok
θ (t |wi ,s,d) = softmax(hi ·C)

for i ∈ {1..n} where wi is a placeholder and C ∈
R|V |×dmodel is a parameter to be learned.

Update classifier: The update classifier is only
present in the high level program. It scans over the
sentences and make a binary decision to update a
given sentence

π
upd
θ

(u|si ,d) = softmax(hi ·D)

for i ∈ {1..n} and D ∈R2×dmodel is a parameter to be
learned.
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(a) Transformer blocks extract the sen-
tence representations which are used
by high level policy classifiers. Sup-
pose that the update policy predicts to
refine sentence 1 and 3

(b) The input to the low level trans-
former is the concatenated sentences
identified by the high level update pol-
icy.

Figure 1: The illustration of the proposed model for the update iteration. The same architecture can be applied for
different tasks with specific classifiers. We have omitted attention from transformer blocks for simplicity. p stands
for position embedding wheras s is for segment embedding

3.3 Noise

There is no large-scale labeled training dataset for
document-level rewriting. Accordingly we train on
synthetic dataset. To generate artificial broken text,
we apply transformation techniques both at the sen-
tence and word level and then learn to reverse the
transformation to recover the original document.
The techniques we use at the sentence level in-
clude: i) sentences reordering where sentences are
randomly shuffled and/or deleted; ii) sentence inser-
tion that a totally independent sentence is inserted
into the source. iii) sentence update the sentence is
slightly modified. For the lower-level transforma-
tion, we apply: i) word insertion that we insert a
random word from another pre-defined vocabulary
into the source. ii) shuffle and delete that we shuf-
fle and delete some words. Each transformation is
applied with a uniform probability between 0 and
1 leads to different trajectories of noise.

3.4 Oracle

Expert policy actions a∗ are created by reversing
the noise in the data. This is done by keeping track
of the noise actions that have been used to create a
corrupted output. In order to get alignment among
sentences, we create a bipartite graph where the
nodes are the sentences and the edge weight is the
Levenstein distance between those sentences. We
use max-flow min-cut algorithm to get the align-

ment (Dantzig and Fulkerson, 2003).

3.5 Training
Training is done by imitating the expert policy. We
design roll-in policy such that each classifier is
trained on the output of the other classifier. This
reduces exposure bias as the model is trained on
conditions it will encounter at decoding. The al-
gorithm for training is shown in algorithm 3. The
objective function is the product of decisions made
during the generation process. It is the loses in-
curred by both the high level and low level program
and is shown on line 14.

4 Experiments and Analysis

4.1 Experimental Setup
Data sets. We conduct experiments on synthet-
ically generated dataset consisting of sorted and
unsorted sequence pairs. Each sequence contains
5 - 10 and each line has between 20 to 100 tokens.
The document is sorted in numerical order with
tens coming before hundreds. The numbers lie be-
tween 1 and 1000. We generated 300K such pairs
for training consisting of unsorted sequence as in-
put and sorted sequence as output.

We further use real world datasets including
ROC stories (Mostafazadeh et al., 2016), consist-
ing of multiple 5 lines stories to check the ca-
pabilities of our model. We also conducted ex-
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periemnts on Multi-news and DUC-2004 for multi-
document summarization (MDS), which is a sub-
task of summarization tasks. Multi-news (Lebanoff
et al., 2018) is a large-scale dataset for MDS and
DUC-2004 (Over and Yen, 2004) is a benchmark
dataset in MDS and its source documents are trun-
cated to 1,500 tokens. To generate our input and
output pairs, we inserted noise in the output se-
quences as outlined in section 3.3.

Evaluation Metrics. Rouge (Hovy et al., 2006),
an automatic evaluation metric, is commonly used
in Summarization to evaluate the quality of sum-
maries. We use Rouge-l, Rouge-2 and Rouge-L
to measure unigram-overlap, bigram-overlap, and
the longtest common sequence between system and
actual summaries. Synthetic and ROC stories are
evaluated with BLEU score (Papineni et al., 2002).

Baselines. We compare three models: i) Copy:
the original text is copied without any change,
which establishes the lower bound for the task. ii)
Transformer: a vanilla Transformer (Vaswani et al.,
2017) is used to generate a sequence of text by
reconstructing the source text. Without explicit
editing guidance, we have little control over its
generation process. iii) Levenshtein Transformer
(LevT): LevT is a semi autoregressive model for par-
allel sentence-level sequence generation (Gu et al.,
2019). It refines a given sequence in an iterative
manner with three operations, including deletion,
placeholder prediction and token prediction. The
iteration terminates when a certain stopping crite-
rion is met. iv) Editor transformer: It is similar
to the LevT, with the exception that it introduce a
reposition operator instead of the deletion operator
(Xu and Carpuat, 2020).

Implementation Details. To train the our mod-
els, we follow most of the hyper-parameter settings
in (Gu et al., 2019). The only differences are that
we use 3 Nvidia V100 GPUs and adopt fastbpe (?).

4.2 Results

The main results for summarization are shown in
table 1. The best result is obtained by copy across
both dataset indicating that post editing of long
sequences may hurt its quality. Copy consist of
output from SummPip system (Zhao et al., 2020a).
SummPip uses graph clustering to find relevant sen-
tences which are then used to generate the summary.
Among other models, the Vanilla transformer per-
formed better showing a strong bias present in the

Multi-News DUC-2004
R-1 R-2 R-L R-1 R-2 R-L

Copy 42.32 13.28 37.86 36.30 8.47 32.52
Transformer 40.62 12.42 36.37 35.4 7.78 31.71
LevT 25.93 8.59 28.95 23.45 4.89 25.12
Editor 25.56 8.13 28.33 23.17 4.21 25.01
Ours 21.67 5.89 24.03 18.22 2.17 20.87

Table 1: Experiment Results on Multi-News and
DUC2004 dataset

Synthetic ROC-Stories

Copy 23.59 28.82
Transformer 30.17 35.72
LevT 22.42 25.29
Editor 22.78 25.89
Ours 20.63 23.10

Table 2: Experiment Results on Synthetic and ROC-
stories dataset. We report the BLEU score in the table.

languages for autoregressive monotone generation.
Levenshtein and the Editor transformer performed
comparably whereas as our model showed no im-
provement over the baselines. We see similar per-
formance in Synthetic and ROC-stories dataset in
table 2 with Vanilla transformer performing better
then the other models.

4.3 Analysis

We outlines various ways to improve the results of
our model:

Evaluation metrics sensitivity towards docu-
ment level ordering: We measure the sensitivity
of our evaluation metrics towards capturing sen-
tence reordering. We permuted sentences in a doc-
ument and measure the metric's mean and standard
deviation. The results in table 2 shows the inad-
equacy of using these metrics(BLEU, ROGUE)
towards document level phenomenons. This sug-
gest a training approach where a low level program
is initially trained separately and then kept frozen
while the high level program is trained.

Mean Standard Deviation

Synthetic 97.84 ±0.05
ROC stories 98.94 ±0.03
Multi-News 97.95 ±0.05
DUC-2004 97.73 ±0.05

Table 3: Sensitivity of metrics towards capturing sen-
tence reordering. We synthetic and ROC stories we re-
port the BLEU score. For Multi-news and DOC-2004
we report the R1 score. Mean and standard deviation is
measured over 10 runs.
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Distilled Dataset: Semi/non-autoregressive
models struggle to achieve quality similar to
autoregressive models. As the dependencies
are broken, it become difficult for the model to
generalise across multimodal dataset. The situation
is further aggravated when the sequences are long.
Distilled dataset has been found useful in dealing
with multomodality problem in non-autoregressive
modals (Zhou et al., 2019). Instead of using
the actual output, the outputs generated from
an autoregressive teacher modal are used with
the input sequence. It is not directly clear as
to how we can use distilled data in our model.
One way is to insert the noise in distilled dataset
to get input sequences. Another way is to use
curriculum learning (Bengio et al., 2009), starting
with distilled dataset and then moving to harder
actual examples.

Better Training: Pre-training and fine-tuning ap-
proach has been found useful in various tasks. Our
model consist of various components including
classifiers at two levels. These classifiers can be in-
dividually pre-trained. Once the pre-training step is
done, the whole model can be fine tuned for better
model generalisation.

Use of Autoregressive model: The low level
program is responsible for word generation. Due
to the inherent left to right generation bias, autore-
gressive models have shown better results in our
experiments. We can take advantage of this bias by
using autoregressive model as a low level program
but this can lead to longer decoding times.

Attention Mechanism: Wider context have
been shown to improve results for various docu-
ment level task (Kim et al., 2019). Designing an
attention mechanism such that more attention is
given to the sentences around the given sentence
than those far away in the document can improve
results. This can be done by having more atten-
tion heads for the near context then the far away
context.

5 Related Work

Previous work on long text generation has mostly
focused on generating tokens up to three hundred
words. These method usually employ the idea of
planning a document before generating it (Shen
et al., 2019; Zhao et al., 2020b; Rashkin et al.,
2020). Another line of work, focus on extending
transformer architecture to model long sequences

(Wang et al., 2020; Choromanski et al., 2020). Re-
cent work by (Tan et al., 2020) used pre-train lan-
guage models to progressively generate longer text
greater than 300 tokens. Our work differs from
previous approaches as it allows editing the gener-
ated text while it is being written. Previous work on
non-monotonic generation and refinement (Welleck
et al., 2019; Stern et al., 2019; Lee et al., 2018) has
mostly focused on generating shorter text. Our
proposed approach, differs from prior works by ex-
tending non-monotonic generation towards longer
texts.

6 Conclusion

We present a hierarchical document generation
model, that is capable of revising and editing its
generated text thus bringing it closer to human-
level intelligence. Although results showed that
our approach lags behind the baselines, it did
shed light into various problems present in semi-
autoregressive models and long document genera-
tion. In the future, we will be incorporating these
insights into our model to make it more robust.
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A Appendices

A.1 Generation Algorithm

Algorithm 1 Generation in HMDP
Require: Initial document d0, policy: πθH

1: d ← d0

2: while Termination condition is not met do
3: rep_index ← argmaxr

∑
si∈d logπr ep

θH
(ri |si ,d) . Do reposition

4: d ← E (d,rep_index)
5: ins_index ← argmaxp

∑
si ,si+1∈d logπi ns

θH
(pi |si ,si+1,d) . Do insertion

6: d ← E (d, ins_index) . Call to Low level MDP
7: upd_index ← argmaxu

∑
si∈d logπupd

θH
(ui |si ,d) . Do update

8: d ← E (d,upd_index) . Call to Low level MDP
9: end while

Algorithm 2 Low Level MDP
Require: Document d, policy: πθL , Hi Level MDP action: H

1: while Termination condition is not met do
2: s0 ← buildFrame(d,H)
3: if s0 is empty then
4: s ← s0 . Skip reposition
5: else
6: rep_index ← argmaxr

∑
wi∈s logπr ep

θL
(ri |wi ,s,d) . Do reposition

7: d ← E (s,rep_index)
8: end if
9: plh_index ← argmaxp

∑
wi ,wi+1∈s logπi ns

θL
(pi |wi , wi+1,s,d) . Insert placeholders

10: s ← E (s,plh_index)
11: tok_index ← argmaxt

∑
wi∈s,wi==<mask> logπtok

θL
(ti |wi ,s,d) . Fill placeholders

12: s ← E (s,tok_index)
13: end while
14: d ← documentUpdate(d,s)

A.2 Training Algorithm
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Algorithm 3 Training for Hierarchical Levenshtein Transformer

Require: Training data T , Model policy: πθ, Expert policy: π∗
1: while Maximum training steps reached do
2: (d,d∗) ∼T . Sample a training pair

3: repH∗, insH∗,updH∗ ←πH∗ (d,d∗) . Get oracle actions
4: repL1∗, insL1∗,tokL1∗,repL2∗, insL2∗,tokL2∗ ←πL∗(d,d∗)

5: L
r ep
θH

←−∑
si∈d logπr ep

θH
(r epH∗

i |si ,d)
6: d ← applyAction(d,repH∗)

7: L i ns
θH

←−∑
si ,si+1∈d logπi ns

θH
(i nsH∗

i |si ,si+1,d)
8: s ← buildFrame(insH∗,d)

9: L
r ep1
θL

←−∑
wi∈s logπr ep

θL
(r epL1∗

i |wi ,s,d) . Low Level
10: s ← applyAction(s,repL1∗)
11: L i ns1

θL
←−∑

wi ,wi+1∈s logπi ns
θL

(i nsL1∗
i |wi , wi+1,s,d)

12: s ← applyAction(s, insL1∗)
13: L tok1

θL
←−∑

wi∈s,wi=<mask> logπtok
θL

(tokL1∗
i |wi ,s,d)

14: d ← applyAction(d, insH∗)

15: L
upd
θH

←−∑
si∈d logπupd

θH
(upd H∗

i |si ,d)
16: s ← buildFrame(updH∗,d)

17: L
r ep2
θL

←−∑
wi∈s logπr ep

θL
(r epL2∗

i |wi ,s,d) . Low Level
18: s ← applyAction(s,repL2∗)
19: L i ns2

θL
←−∑

wi ,wi+1∈s logπi ns
θL

(i nsL2∗
i |wi , wi+1,s,d)

20: s ← applyAction(s, insL2∗)
21: L tok2

θL
←−∑

wi∈s,wi=<mask> logπtok
θL

(tokL2∗
i |wi ,s,d)

22: θ← θ−λ∇[L r ep
θH

+L i ns
θH

+L
upd
θH

+L
r ep1
θL

+L i ns1
θL

+L tok1
θL

+L
r ep2
θL

+L i ns2
θL

+L tok2
θL

]
23: end while
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Abstract

Universal adversarial texts (UATs) refer to
short pieces of text units that can largely affect
the predictions of Natural Language Process-
ing (NLP) models. Recent studies on universal
adversarial attacks require the availability of
validation/test data which may not always be
available in practice. In this paper, we propose
two types of Data-Free Adjusted Gradient
(DFAG) attacks to show that it is possible to
generate effective UATs with manually crafted
examples. Based on the proposed DFAG at-
tacks, we explore the vulnerability of com-
monly used NLP models from two perspec-
tives: network architecture and pre-trained em-
bedding. The empirical results on three text
classification datasets show that: 1) CNN-
based and LSTM models are more vulnera-
ble to UATs than self-attention models; 2) the
vulnerability/robustness difference between of
CNN/LSTM models and self-attention models
could be attributed to whether or not they rely
on training data artifacts for predictions; and 3)
the pre-trained embeddings could expose vul-
nerability to both UAT and transferred UTA at-
tacks.

1 Introduction

Deep neural networks (DNNs) have enabled signif-
icant advancement in a range of natural language
processing (NLP) applications such as sentiment
analysis (Yang et al., 2019; Xu et al., 2019) and
topic classification (Sun et al., 2019). Despite the
superior performance, DNNs are known to be vul-
nerable to adversarial perturbations (Szegedy et al.,
2014; Goodfellow et al., 2015; Ma et al., 2018; Li
et al., 2019; Ma et al., 2021), i.e., small changes
on the input could lead to entirely incorrect predic-
tions (Croce and Hein, 2020; Jiang et al., 2020).
It has raised practical security concerns for the
deployment of DNNs in safety-critical scenarios
(Eykholt et al., 2018; Duan et al., 2020). Adver-

sarially perturbed inputs are known as adversarial
examples and the process of generating adversarial
examples is known as adversarial attack. It has
become a common practice to examine the vul-
nerability of DNNs to adversarial examples and
mitigate the vulnerability by involving adversar-
ial examples during the training process as a type
of augmented data (Nie et al., 2020; Madry et al.,
2018; Wang et al., 2019a; Zhang et al., 2019; Wang
et al., 2019b; Croce et al., 2020).

Most adversarial attack methods for NLP mod-
els (Alzantot et al., 2018; Ebrahimi et al., 2018b;
Jin et al., 2020) are sample-wise methods that craft
adversarial examples by manipulating each clean
example. Different from sample-wise attacks, uni-
versal adversarial attack (Behjati et al., 2019) aims
to generate Universal Adversarial Texts (UATs) or
universal triggers (Wallace et al., 2019) for each
class or the entire dataset to fool NLP models. How-
ever, existing methods (Wallace et al., 2019; Song
et al., 2021; Behjati et al., 2019) all require the
validation/test dataset of the task or some proxy
datasets in a similar domain to craft UATs.

To more easily and efficiently generate UATs,
we propose Data-Free Adjusted Gradient (DFAG)
attacks. According to the evaluation, our proposed
DFAG attacks achieve a comparable performance
as the original linear approximation method (Wal-
lace et al., 2019) on most of the NLP models. We
find that UATs generated by our method highly
overlap with those from the original linear approx-
imation method (Wallace et al., 2019). This indi-
cates that the vulnerability of UATs may be inher-
ent in the models. To better understand the vul-
nerability, we take text classification as an exam-
ple and dive into different neural network architec-
tures. Empirical results show that CNN and LSTM
models are notebly more vulnerable to UATs than
self-attention models. We also reveal that the effec-
tiveness of UATs generated for LSTM and CNN
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models exposes certain training data artifacts, i.e.,
important words in the training data that are more
closely correlated with the targeted class. In con-
trast, self-attention models are relatively more ro-
bust to UATs. This finding is consistent with pre-
vious study on model robustness to training data
artifacts, so it is likely that self-attention models
suffer less from training data artifacts.

Apart from the neural architectures, we also
examine pre-trained embeddings, including static
pre-trained word embeddings (Pennington et al.,
2014; Mikolov et al., 2018) and contextualized
ones from the pre-trained language model BERT
(Devlin et al., 2018). These embeddings have been
widely used in different NLP applications. Our ex-
periments show that pre-trained word embeddings
could deteriorate model robustness to UATs, and
even self-attention models can become vulnerable
with pre-trained embeddings. Upon further inves-
tigation, we find that UATs are often transferable
among models that use the same pre-trained em-
beddings. This reveals one unique vulnerability of
NLP models to UATs.

2 Generating Universal Adversarial
Texts

Problem Formulation. Consider a text classifier
f mapping from input x to label y. The goal of
universal adversarial attack is to generate a small se-
quence of tokens t = (t1, t2, ..., tk) (i.e., an UAT),
which can be inserted into any clean example x to
cause misclassification towards a targeted wrong la-
bel ỹ. Previous work (Behjati et al., 2019; Wallace
et al., 2019) showed the effectiveness of UAT when
three words are inserted at the beginning of the
input sequence. Here, we follow their settings and
predetermine the adversarial target class ỹ. The
attack problem can be formally definedd as: for
any clean example {(x, y)|(x, y) ∈ D and y 6= ỹ},
we aim to make the classifier f predict the per-
turbed example t ⊕ x as the targeted label ỹ, i.e.,
f(t⊕ x) = ỹ. The problem can be solved by min-
imizing an adversarial loss Ladv(t⊕ x, ỹ), which
is the cross-entropy loss defined with the targeted
label.

argmin
t

E(x,y)∼D[Ladv(t⊕ x, ỹ)] (1)

2.1 Gradient-based Attack
A UAT is composed of discrete tokens for which we
search from the vocabulary V = w1, w2, . . . , w|V |

(|V | is the size of vocabulary). Each word wi in the
vocabulary is represented by a dense vector called
embedding ei. In order to find the optimal UAT,
Behjati et al. (2019) applied gradient descent for
t in the embedding space and identified the word
in the vocabulary by projecting the nearest embed-
dings of the word. More efficiently, Wallace et al.
(2019) proposed a linear approximation approach
to generate gradients to approximate the loss of
substituting t with tupdate, i.e., Ladv(tupdate⊕x, ỹ).
According to the first-order Taylor approximation,
we measure the effectiveness of the substitution by
the inner product of the gradient∇etLadv with the
embedding of tupdate.

argmin
et

eTtupdate
∇etLadv (2)

The approximation scores for all the possible
substitution words in the vocabulary can be effi-
ciently calculated via matrix multiplication, where
E ∈ R|V |×m denotes the embedding matrix with
vocabulary size |V | and embedding size m. It only
needs one forward and backward pass to compute
the gradients for all the positions of UAT tokens.
The equation is shown below where ∇etLadv has
the dimensions for positions of UAT tokens and
embedding size m.

A = E×∇etLadv (3)

Both approaches require batches of data to up-
date the UAT t. However, we can still use the linear
approximation approach as a baseline for our exper-
iment due to its efficiency. This approach requires
a batch of examples to calculate the gradient for
each update of the UAT, as shown in Equation (4)
where n examples are consumed.

∇etLadv =
1

n

n∑

i=1

∇etLadv(t⊕ xi) (4)

2.2 Data-free Adjusted Gradient Attack
The universal property of UATs indicates that they
reflect the inherent vulnerability of well-trained
NLP models. Moreover, Wallace et al. (2019) re-
veals that UATs are a form of training data artifacts
for natural language inference models. We sus-
pect the validity of this conclusion across all text
classification tasks, which is shown in Section 3.4.
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Figure 1: One iteration of the DFAG attack. The ar-
bitrary example x is a positive movie review selected
from the SST-2 test data, and the goal is to generate a
UAT to make any non-negative (positive) reviews to be
classified as negative ones. The UAT is generated by it-
erating the process: (1) concatenate the UAT t and the
example x ; (2) generate dense text representation of
t ⊕ x, i.e., et, ex; (3) generate pseudo-samples eps in
the embedding space; (4) compute the gradient of ad-
versarial loss w.r.t. et and finally find the updated UAT
tupdage via the linear approximation method.

Therefore, using batches of data for universal attack
might be redundant. Our proposed algorithm only
requires an arbitrary example x = w1, w2, ..., wl

(l denotes the length of the text) which does not
belong to the targeted class ỹ to generate effective
UATs. In our experiment, we select the first valid
sample from the test data. The attack could be
data-free if the adversary chooses to manually craft
the example. This is feasible because the only re-
quirement for the example is that it does not belong
to the targeted class. An interesting parallel work
(Parekh et al., 2021) of data-free attack generates
what they defined as "class impressions" for this
purpose. We regard that the use of class impres-
sions does lead to faster convergence but are not
necessary, according to our experiments. Figure 1
demonstrates the process of updating the UAT in
one iteration of our DFAG attack.

Unreliable gradients. The gradient for one sin-
gle example might not be reliable since a DNN is
usually not a smooth function. One most notable
example is that an infinitesimal perturbation of the
input could change its prediction. The issue also
happens to the field of model interpretation, where
they attribute input features for model prediction.
Therefore, we generate pseudo-samples eps which
are dense vectors eps1 , .., epsK in the embedding
space and compute more reliable gradient by ag-
gregating the gradients of the pseudo-samples.

Generating pseudo-samples. We pass the t⊕x
into the embedding layer, which outputs the dense
representation e in the embedding space. We then
manipulate e to generate K pseudo-samples eps in
the embedding space during each iteration. The gra-
dients of the pseudo-samples are then aggregated
to apply the linear approximation attack. We refer
to this approach as the DFAG (Data-Free Adjusted
Gradient) attack.

We employ the following two techniques to gen-
erate pseudo-samples, which have been proved to
be effective in approximating gradients for model
interpretation (Smilkov et al., 2017; Sundararajan
et al., 2017).

• Smooth noise: the Gaussian noise η is gen-
erated with mean 0 and standard deviation σ.
We denote this method as DFAG (Smooth)
to accredit the SmoothGrad method (Smilkov
et al., 2017).

eps = {e+ ηi | i ∈ [1..K]}
where ηi ∼ N (0, σ2)

(5)

• Path method: we sample K pseudo-samples
evenly along the straight path from the origin
to the given sample. We denote this method as
DFAG (Integrated) to accredit the Integrated
Gradient method (Sundararajan et al., 2017).

eps = {epsi | i ∈ [1..K]}

where epsi =
i

K
× e

(6)

3 Attacking Text Classification Models

This section introduces model configurations and
attack settings, and analyzes the experimental re-
sults. We also publish the source code for all the
settings and experiments on Github 1 to reproduce
the result.

3.1 Modeling Setup
Tasks and Datasets. Our experiments include
Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013), Yelp (Zhang et al., 2015) datasets for
sentiment classification task, and AG-News con-
structed by (Zhang et al., 2015) for topic classifica-
tion task.

1https://github.com/xinzhel/attack_
alta
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Task Architecture Pre-
trained

Attack Success Rate ASR Ratio

Baseline DFAG
(Smooth)

DFAG
(Integrated)

SST-2

LSTM

/ 0.53 0.53 0.52 1
GloVe 0.43 0.44 0.3 1.02
FastText 0.85 0.85 0.81 1
BERT 0.43 0.25 0 0.58

CNN
/ 1 0 1 1
GloVe 1 1 1 1
FastText 1 0 1 1
BERT 0.25 0.2 0.1 0.8

Self-attention
/ 0.43 0.43 0.43 1
GloVe 1 1 1 1
FastText 1 1 1 1
BERT 0.16 0.15 0 0.94

Yelp

LSTM
/ 0.55 0.26 1 1.82
GloVe 0.81 0.89 0.13 1.1
FastText 0.58 0.4 0.24 0.69
BERT 0.16 0.14 0.05 0.88

CNN
/ 1 0 0 0
GloVe 0.91 0 0.37 0.41
FastText 1 0 0.98 0.98
BERT 0.24 0.14 0.02 0.58

Self-attention
/ 0.15 0.15 0 1
GloVe 0.97 0.97 0.68 1
FastText 0.98 0.98 0 1
BERT 0.1 0.07 0.03 0.7

AG-News

LSTM
/ 0.3 0.3 0.3 1
GloVe 0.3 0.18 0 0.6
FastText 0.2 0.2 0.2 1
BERT 0 0 0 /

CNN
/ 1 1 1 1
GloVe 0.88 0.91 0.41 1.03
FastText 1 0.98 1 0.98
BERT 0.04 0.06 0 1.5

Self-Attention
/ 0.02 0.01 0 0.5
GloVe 0 0 0 /
FastText 0.1 0.38 0.13 3.8
BERT 0 0 0 /

Table 1: Attack success rates on different NLP models. One targeted class is selected to attack for each task:
"negative" class for SST-2, Yelp, "Business" class for AG-News. The baseline attack refers to Wallace et al.
(2019), while the DFAG (smooth) and DFAG (integrated) attacks use the smooth noise and path method. We use
the ASR ratio of the DFAG attack to the baseline attack to measure the effectiveness of our DFAG attacks. The
numbers in bold indicate that our DFAG attacks are more effective than the baseline. The ratios of less than 0.5
are marked in the italics and underlining, which indicate that our DFAG attacks are much less effective than the
baseline.

Model architectures. We use three classical neu-
ral networks as the text classifiers.

• LSTM: Two-layer LSTM with 512 hidden di-
mensions. We take the final hidden state of the
last time step for fully connected and softmax

141



layers to compute the probability distribution
of all the classes.

• CNN (Zhang and Wallace, 2017): Four 1-
dimensional convolution layers with filter
sizes (2, 3, 4, 5) respectively. Each layer
has six filters and is followed by the ReLU
activation function and max-pooling layers.
Therefore, the total output dimension is 24.

• Self-attention: One self-attention layer where
we set 5 parallel attention heads (Vaswani
et al., 2017) followed by a self-attentive pool-
ing layer (McCann et al., 2017).

Pre-trained embeddings. We use static word
embeddings GloVe (Pennington et al., 2014), Fast-
Text (Mikolov et al., 2018) and the contextualized
embeddings from the last hidden layer of the pre-
trained language model BERT (Devlin et al., 2018).
The pre-trained embeddings can then be fed into
the text classifiers. GloVe and FastText have differ-
ent designs for obtaining word embeddings. GloVe
embeddings are trained on a word co-occurrence
matrix using a log-bilinear function where any pairs
of word vectors are bilinearly mapped into the co-
occurrence counts, while FastText embeddings are
obtained by training a skip-gram model on word
pairs from negative sampling.

All the pre-trained parameters are fixed without
fine-tuning, as we aim to separate the vulnerabil-
ity of the pre-trained embeddings from that of the
model architectures and training. Specifically, we
want to avoid propagating the information of the
training data into pre-trained parameters, which
would benefit the analyses of pre-trained embed-
dings and training data artifacts. In addition, when
models use BERT embeddings with LSTM or CNN
for classification, self-attention building blocks of
BERT could interfere with our evaluation of archi-
tectures.

Training hyperparameters. We train all the
models with the Adam optimizer, learning rate
5e-5, and batch size 64. The maximum number
of training epochs is set to 5, and early stopping
would occur when the validation accuracy has no
improvement for one epoch.

3.2 Attack Setup

Attack hyperparameters. We select the first ex-
ample from the attack data used by the baseline
and then update the UATs in a maximum of 10

iterations with an early stop if there is no decrease
of the loss Ladv for more than three iterations. We
generate ten pseudo-samples during each iteration.
The standard deviation of Gaussian noise is set as
0.01.

Constraints of substitution tokens. The vocab-
ulary of BERT models has been built along with its
pre-trained tasks, whereas we construct the word-
level vocabulary from the training data for other
models. Since sentiment words have strong indica-
tions for sentiment classification, sentiment words
are filtered out following the practice in Wallace
et al. (2019). In addition, our test examples are
restricted to long sequences (>10 words) to pre-
serve semantics to a large extent. BERT employs
word-piece segmentation to process textual data
into a sequence of sub-word units. However, when
one or more sub-word are selected as the UAT to-
kens, the input may be re-segmented into a differ-
ent sequence, such as the sub-word "##oot" which
would be re-segmented into "#" "o" and "##ot".
Our experiment shows that the word-level attack
achieves similar performance, and tokens in the
word unit cover 76.6% tokens in the BERT vocabu-
lary. Therefore, we only consider substitution to-
kens in the word units to avoid the re-segmentation
issue. The word-level substitutions also prevent
that sub-words in UATs become unknown words
during the UAT transfer attack.

Evaluation. We calculate Attack Success Rate
(ASR) to measure the performance of the attack:
the percentage of examples that are misclassified
by the model as the targeted class among all the
evaluation samples. We select evaluation examples
that do not belong to the targeted class from the
original test data.

3.3 Experimental Results

We first empirically verify the effectiveness of our
attack on three neural network architectures, then
evaluate the vulnerability of pre-trained embed-
dings via UAT transfer attacks.

Attack effectiveness. As shown in Table 1, our
DFAG attacks with smooth gradients achieve com-
petitive results on LSTM and self-attention mod-
els to the baseline. Moreover, the DFAG (Inte-
grated) attack always performs better on CNN mod-
els, except the GloVe-CNN model on AG-News.
Note that this finding does not involve BERT-based
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models since BERT composes of multi-head self-
attention layers.

To quantify how much effectiveness our DFAG
attacks achieve relative to the baseline attack, we
also report the ASR ratio of our DFAG attack to
the baseline, i.e.,

ASR of the DFAG
ASR of the baseline

Here, we choose the better one between the two
DFAG attacks. It shows that our DFAG attacks
achieve more than 50% effectiveness of the base-
line in most cases. An ASR ratio of more than 1
indicates that our DFAG (Smooth) attack even out-
performs the baseline on several models. Note that
our DFAG attacks are proposed to more easily and
efficiently examine the vulnerability of NLP mod-
els to universal adversaries, rather than competing
the ASR with existing attacks.

Failure cases on CNN models. Both DFAG at-
tacks exhibit low success rates against CNN mod-
els on the Yelp dataset. By contrast, the baseline
attack achieves nearly 100% success rates on all
CNN models, where only the GloVe embeddings
drop around 10% success rates on Yelp and AG-
News datasets. This marks some failure cases of
our DFAG attacks.

Comparing UATs generated by the baseline
and our DFAG attacks. By comparing the
UATs, we find that they actually generate many
overlapped UAT tokens, especially for SST-2 mod-
els, as shown in Table 3. We suspect that the low
overlap rates for AG_News and Yelp models are
due to their large vocabulary sizes.

The vulnerability of pre-trained embeddings.
As shown in Table 1, the use of pre-trained word
embeddings sometimes makes the models more
vulnerable, especially for self-attention models.
This counter-intuitive result indicates the existence
of embedding vulnerabilities in pre-trained embed-
dings. Our UAT transfer attacks also confirm the
vulnerability of pre-trained embeddings. The result
in Table 2 shows that UATs tend to achieve the best
transferability on models with the same pre-trained
embeddings. This phenomenon is also observed
for BERT, although the success rate drops.

Measuring UAT transfer attacks. The absolute
transfer ASR is not suitable to measure transfer-
ability because vulnerable models tend to have low
ASRs. Therefore, in Table 2, we normalize the

absolute transfer ASR by dividing by the original
ASR of the victim model. The higher the normal-
ized ASR the more transferable the UATs are to
the target models (columns of Table 2). Take the
first row as an example: the absolute transfer ASR
of the BERT-LSTM model is only 0.06, while the
vulnerable models always have higher ASRs. The
normalized ASRs remove the effect of the varying
vulnerabilities of the target models since it would
amplify the absolute transfer ASR for the robust
models, causing the value for BERT-LSTM from
0.06 to 0.44 (0.06 dividing by 0.14).

3.4 Training Data Artifacts in UATs
Training data artifacts are hypothesis words that are
highly correlated with the labels. The artifacts have
been explored by neural NLP models as the shallow
shortcut and spurious correlations for the predic-
tions (Gururangan et al., 2018; Branco et al., 2021).
Wallace et al. (2019) argues that effective UATs for
Natural Language Inference (NLI) models expose
training data artifacts. Through our analyses, we
further prove that training data artifacts should be
attributed to the existence of UATs. Interestingly,
we also find that the self-attention architecture pro-
vides certain robustness to such training data arti-
facts.

Measuring training data artifacts of UATs.
We follow Gururangan et al. (2018); Wallace et al.
(2019) and compute the point-wise mutual informa-
tion (PMI) between each word w and the targeted
class ỹ as:

PMI(w, ỹ) = log
p(w, ỹ)

p(w)p(ỹ)

The denominator is the expected probability of
the word w appearing in class ỹ. The numerator is
the observed probability. PMI measures how much
more the word w occurs in the targeted class than
we expect. We measure the training data artifacts
of UAT words by their PMI ranks. We rank all the
words according to their PMI scores in descend-
ing order. Then, the high-rank words show a high
correlation with the targeted class, i.e., indicating
training data artifacts. We also measure the fre-
quency of each trigger word (i.e., the frequency in
a particular class vs. the total frequency) because
PMI would amplify words with low frequency.

Self-attention is robust to training data arti-
facts. The training data artifacts are highly re-
flected on UATs generated for CNN and LSTM
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Dataset FastText GloVe BERT
LSTM CNN Self-

Attention
LSTM CNN Self-

Attention
LSTM CNN Self-

Attention

FastText-
LSTM

Yelp 1 0.8 0.42 0.2 0 0.05 0.44 0.08 0
SST 1 1 0.93 0.7 0.91 1 0.02 0.04 0.12

GloVe-
LSTM

Yelp 0.31 0.07 0 1 0.31 0.73 0.43 0.08 0
SST 0.96 1 0.82 1 0.96 1 0.02 0.04 0.12

BERT-
LSTM

Yelp 0.08 0.1 0.02 0.37 0.18 0.15 1 0.67 0.7
SST 0 0.1 0.05 0 0.01 0.01 1 1.16 1.56

Table 2: The vulnerability of pre-trained embeddings is reflected by the UAT transfer attack. Rows: Each row
represents the source models on which the UATs are generated. Columns: each column specifies a target model of
the transfer attack. For example, the first row of the second column demonstrates the normalized ASR when we
apply UATs generated on the FastText-LSTM model to the FastText-CNN model.

Overlap
Rates

Total
Tokens

Overlap
Tokens

vocabulary
Size

SST-2 76% 21 16 17,356
AG-
News

33% 6 2 114,068

Yelp 12% 8 1 746,663

Table 3: Overlap rates of the UATs generated by the
baseline and our DFAG attacks.

models, while self-attention models generate UATs
with low training data artifacts. The result is shown
in Table 4. In order to verify the robustness of self-
attention models to training data artifacts, the top 5
tokens with high training data artifacts are manu-
ally selected to evaluate the LSTM, CNN, and self-
attention models. Only the self-attention model
shows 0 attack success rates, as can be inferred
from Table 5. The robustness of self-attention mod-
els may be attributed to their contextualized to-
ken representations: each token is represented by
attending all the input tokens based on the atten-
tion scores. This type of architectures prevents the
model from leveraging shallow shortcuts (class-
wise triggers) for predictions.

4 Related Work

Universal adversarial perturbations. Behjati
et al. (2019); Wallace et al. (2019); Song et al.
(2021) generated the input-agnostic perturbations
of text for NLP models. These works follow the ini-
tial work (Moosavi-Dezfooli et al., 2017) of finding
Universal Adversarial Perturbations (UAPs) for im-
ages. Compared to the instance-specific adversarial
perturbations (Liang et al., 2018; Ebrahimi et al.,
2018b,a; Li et al., 2020), UAPs is a more severe
security issue (Ribeiro et al., 2020). Behjati et al.

(2019) employed projected gradient descent for de-
vising UATs. Wallace et al. (2019) followed the
linear approximation to generate adversarial text
(Ebrahimi et al., 2018b) to generate UATs, which
converges faster than Projected Gradient Descent
(PGD). Song et al. (2021) generated natural UATs
with less grammatical errors and more fluency via
Adversarially Regularized Auto Encoder (ARAE).
In this paper, we refer to the gradient approxima-
tion method. The original idea was proposed by
Ebrahimi et al. (2018b) called Hotflip and then uti-
lized by Wallace et al. (2019) to generate universal
triggers.

Gradient x Embedding scores for model inter-
pretation. The first-order Taylor approach and
Gradient x Embedding scores are also used to gen-
erate the saliency map in the field of model in-
terpretation (Sundararajan et al., 2017; Li et al.,
2016; Smilkov et al., 2017). However, they aim
to attribute the softmax output of a neural network
to input features while we identify the important
words for substitutions in terms of adversarial loss
Ladv. Hence, the gradient is calculated for the
output logits of the correct class rather than the
adversarial loss, and also they use the embeddings
of the original input instead of substitution words.

Adversarial transferability. Empirical study
also mentioned the transferability of universal ad-
versarial perturbations (UAPs) across models with
distinguished architectures and pre-trained mod-
ules, such as image adversaries from VGG-19 to
GoogleLeNet (Moosavi-Dezfooli et al., 2017) or
ResNets to other networks (Wu et al., 2020), and ad-
versarial texts from GloVe-based Reading Compre-
hensive models to ELMo-based models. In terms of
explanations for adversarial transferability, Liang
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Tokens Models Frequencies PMI Ranks
"appears" LSTM 11.0 / 11.0 3664
"Feels" CNN 12.0 / 12.0 3665
"Lawrence" CNN 11.0 / 12.0 4747
"pleasurable" Self-Attention 0.0 / 4.0 17181
"unique" LSTM 13.0 / 14.0 4990
"refreshingly" CNN 10.0 / 10.0 4305
"mess" Self-Attention 1.0 / 30.0 15939

(a) SST-2

Tokens Models Frequencies PMI Ranks
"quickinfo" LSTM 1813.0 / 1813.0 13250
"Qtr" LSTM 62.0 / 63.0 15775
"hellip" LSTM,CNN 80.0 / 80.0 13187
"Spitzer" CNN 220.0 / 238.0 16114

(b) AG-News

As shown in Table 1, self-attention models are robust to UATs.
Therefore, there are no effective UATs listed for self-attention
models.

Tokens Models Frequencies PMI Ranks
"giving" LSTM 8184.0 / 12057.0 338822
"Horrible" LSTM 4136.0 / 4158.0 311571
"inedible" LSTM 2035.0 / 2108.0 311733
"Slowest" CNN 117.0 / 117.0 311557
"BUYER" CNN 97.0 / 97.0 309895
"disrespected" CNN 216.0 / 217.0 311570
"restrain" Attention 8.0 / 41.0 735421

(c) Yelp

Table 4: Training data artifacts of UAT tokens. Frequencies: In-class frequencies are displayed relatively to the
total frequencies.

et al. (2020) proved its correlation with knowledge
transferability, which relates to pre-trained knowl-
edge. Also, adversarial transferability between im-
itated models and victim models (Wallace et al.,
2020; He et al., 2021) also enhanced the relation-
ship between pre-trained, transferable knowledge
and adversarial transferability. These works mo-
tivate us to study the effect of pre-trained embed-
dings via the UAT transfer attack. Yuan et al. (2021)
also studies the transferability of different architec-
tures and pre-trained modules. Different from our
study, they generate the sample-wise adversarial
texts. Interestingly, they achieve an opposite con-
clusion that architecture types are more sensitive
than pre-trained embeddings to transfer attacks.

5 Conclusion

In this work, we investigated the vulnerability of
Natural Language Processing (NLP) models to Uni-
versal Adversarial Texts (UATs). We proposed two
types of Data-Free Adjusted Gradient(DFAG) at-
tacks which can generate effective UATs without
real data. Our DFAG attacks lower the requirement
of using UATs to understand the vulnerability of
NLP models. With DFAG-generated UATs, we
found that the robustness of self-attention to words
with training data artifacts and revealed the unique
(transferable) vulnerability of pre-trained embed-
dings. Our findings could help build robust NLP
models against adversarial attacks. Future work
could expose whether the pre-trained vulnerability
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PMI Ranks Models ASR

1
LSTM 0.2
CNN 0.1

Self-Attention 0

2
LSTM 0.1
CNN 0.1

Self-Attention 0

3
LSTM 0.1
CNN 0.1

Self-Attention 0

4
LSTM 0.2
CNN 0.4

Self-Attention 0

5
LSTM 0.2
CNN 0.5

Self-Attention 0

Table 5: Evaluating the performance of SST models
with the top-5 words out of the whole vocabulary ac-
cording to their PMI ranks.

could make UATs transferable across different NLP
tasks. Moreover, our result should also be verified
on large-scale models. More detailed analyses of
different filter sizes and attention heads are also
interesting future works.
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Abstract

HESIP is a hybrid explanation system for im-
age predictions that combines sub-symbolic
and symbolic machine learning techniques to
explain the predictions of image classification
tasks. The sub-symbolic component makes a
prediction for an image and the symbolic com-
ponent learns probabilistic symbolic rules in
order to explain that prediction. In HESIP, the
explanations are generated in controlled natural
language from the learned probabilistic rules
using a bi-directional logic grammar. In this
paper, we present an explanation modification
method where a human-in-the-loop can mod-
ify an incorrect explanation generated by the
HESIP system and afterwards, the modified ex-
planation is used by the symbolic component
of HESIP to learn a better explanation.

1 Introduction

In recent years, the development of explanation
systems has gained a lot of attention. Most of
these explanation systems (Ribeiro et al., 2016,
2018; Lundberg and Lee, 2017) can explain pre-
dictions made by machine learning (ML) models.
Researchers are focusing on building explanation
systems for ML models, because these models have
shown excellent performance for different predic-
tion tasks (Zhang et al., 2020; LeCun et al., 2015)
and most of these models are sub-symbolic black-
box models that are not easily understandable, and
therefore lead to difficulties explaining the predic-
tions to the users. Explanation systems such as
Lime (Ribeiro et al., 2016), Anchor (Ribeiro et al.,
2018) and SHAP (Lundberg and Lee, 2017) use
existing information of the datasets to explain pre-
dictions. However, sometime information that is
not present directly in the dataset such as relation
information can play an important role in the ex-
planation; especially, in image prediction tasks as
shown in LIME-Aleph (Rabold et al., 2019).

HESIP is a hybrid explanation system for im-
age predictions. The HESIP system explains the
predictions to the users using natural language ex-
planations. The explanations are generated in a con-
trolled natural language (CNL) (Kuhn, 2014) using
a logic programming based bi-directional gram-
mar that is similar to Schwitter (2018). The gener-
ated explanations of the HESIP system are human-
understandable as well as machine-processable.
Since the explanations are represented in a natural
language, they are immediately understandable by
all types of users. The bi-directional grammar of
the HESIP system can also process a generated ex-
planation that has been modified by the user. The
HESIP system aims to generate an explanation for
the predicted image that represents the object in-
formation together with the relation information.
It is expected that such as system is not perfect,
and HESIP is not an exception. HESIP sometimes
generates wrong explanations. To the best of our
knowledge, there is no explanation system that al-
lows a user to modify an explanation in order to
improve the explanation generation process of the
system. It is important that a user can modify an
incorrect explanation so that the system can learn
how to generate a better explanation taking the
feedback from the user into consideration. In this
paper, we present a method that involves a human-
in-the-loop who can fix incorrect explanations by
modifying them.

2 HESIP: System Architecture

HESIP is a hybrid system that explains image pre-
dictions by integrating sub-symbolic and symbolic
ML techniques in two separate components. For
an input image, HESIP makes a prediction using
a sub-symbolic ML model. Afterwards, HESIP
uses a symbolic ML technique to learn symbolic
probabilistic rules that are used to explain predic-
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tions. Based on a definition of hybrid systems intro-
duced in Kautz’s classification (Kautz, 2020), the
HESIP system follows the architecture of a Type-3
hybrid system, since HESIP uses a sub-symbolic
component to work on a task, and then a symbolic
component to finalise that task. Figure 1 shows
the architecture of the HESIP system. More details
about the HESIP system can be found in (Salam
et al., 2021).

Figure 1: Architecture of the HESIP system

Rabold et al. (2019) have developed an explana-
tion system called LIME-Aleph that explains image
predictions using the learned rules. The HESIP sys-
tem is motivated by the LIME-Aleph system and
extends the architecture of LIME-Aleph in order to
achieve a more generalised method. LIME-Aleph
depends on two datasets that consist of synthetic
images while the HESIP system can be applied to
datasets that consist of real-world images. A de-
tail comparison between the HESIP system and the
LIME-Aleph system is provided in (Salam et al.,
2021).

The steps of the HESIP system are demonstrated
here using the PASCAL-Part dataset (Chen et al.,
2014) that consists of real-world images. We want
to learn the concept of a potted plant from the dif-
ferent parts of the concept that are present in an
image. For this learning task, only those images
that contain potted plants and bottles are used from
the dataset. The potted plant concept has two parts:
pot and plant. We say that there is a potted plant
concept in an image, if it represents a pot that is
located below a plant. Similarly, the bottle concept
consists of two parts: body and cap. There are
images of bottles in the dataset that contain only
a body part. In our case, we work with the bottle
images that contain both parts. Figure 2 shows
images that contain a potted plant and a bottle.

2.1 The Sub-symbolic Component
As sub-symbolic ML model, HESIP uses an artifi-
cial neural network (ANN) (see Russell and Norvig,

Figure 2: Example of a potted plant (a) and a bottle (b).

2020, for an introduction) to make a prediction
with a probability for an input image. Therefore,
positive and negative images are selected from the
dataset in order to learn explanatory probabilis-
tic rules in the symbolic component. The sample
images are selected based on the similarity to the
input image. Predictions with their probabilities
for all sample images are made with the ANN. A
sample image is considered as a positive instance,
if the prediction probability of the input image is
less than or equal to the prediction probability of
the sample image; otherwise, the sample image is
considered as a negative instance.

Once the sample images are selected, the HESIP
system extracts all image information and repre-
sents it using an ontology. After that, the symbolic
component uses this image information as data to
learn the probabilistic rules. In the image informa-
tion extraction step, the objects present in the image
and their property information, the location infor-
mation of the objects and the relations between the
objects are extracted. The location of an object is
determined from its position in the image grid con-
sidering the image as a grid. For an image, HESIP
detects the objects and their location information
using Detectron2 (Wu et al., 2019) that implements
the Mask R-CNN (He et al., 2017) object detection
algorithm. The relations between the objects in an
image are determined using the location informa-
tion of the objects. We assume that two objects
are related in any of the following ways: left of,
right of, top of, bottom of, on, under and contain.
The relation between two objects is on or under, if
one object is at the top or at the bottom of another
object and they are adjacent.

2.2 The Symbolic Component

The symbolic component of the HESIP system
learns the explanatory rules using the sample im-
age information. As a symbolic component, HESIP
uses cplint that is a probabilistic logic programming
framework (Riguzzi and Azzolini, 2020). The in-
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formation about the positive and negative sample
images are used as data in the symbolic component
that learns probabilistic rules and the predictions
of the images are then explained using these rules.
A probabilistic rule has the following form:

h:p :- b1,..., bn.

where h is a head literal, b1,..., bn are body lit-
erals and p is a real number between 0 and 1 that
indicates the probability of the rule. The if-symbol
(:-) separates the head and the body of the rule. A
colon (:) is used to associate the probability with
the literal in the head of the rule.

To represent the sample image information, the
HESIP system uses an ontology that has four
predicates: object/1, type/2, property/3 and
relation/3. The predicates object/1, type/2

and property/3 are used to represent an object,
the type of the object and the property of the object.
The relation between two objects is presented using
the predicate relation/3. The probabilistic rules
learned in the HESIP system may contain either
the predicate type/2 or relation/3 in the head of
the rule and may contain any predicates of the on-
tology in the body of the rule. This ontology makes
sure that the explanation generation method used
in the HESIP system can be applied to different
application domains.

Once the information of the sample images is
represented with the help of the ontology, it can
be used as data in the symbolic component where
the information about each image represents an ex-
ample instance. The decision of the sub-symbolic
component is used to determine whether an exam-
ple instance is a positive or negative instance. In
our case, the images of the potted plant concept are
determined as positive example instances while the
images of the bottle concept are determined as neg-
ative example instances. Listing 1 shows a positive
example instance for the potted plant concept in
the symbolic component.

Listing 1: A positive example instance for the potted
plant concept.
begin(model(pp1)).
object(pp1_obj1).
object(pp1_obj2).
object(pp1_obj3).
type(pp1_obj1, potted_plant).
type(pp1_obj2, pot).
type(pp1_obj3, plant).
relation(pp1_obj1, pp1_obj2, contain).
relation(pp1_obj1, pp1_obj3, contain).
relation(pp1_obj2, pp1_obj3, under).

end(model(pp1)).

Using these example instances, the symbolic
component of the HESIP system learns the proba-
bilistic rule in Listing 2 for the potted plant concept.
This rule specifies that an object A is of type potted
plant with the probability 1, if all the literals in the
body of the rule are satisfied.

Listing 2: An example of a learned rule for the potted
plant concept.
type(A, potted_plant):1.0 :-
type(B, pot), object(B),
type(C, plant), object(C),
relation(B, C, under),
relation(A, C, contain),
relation(A, B, contain),
object(A).

After the rule is learned in the symbolic com-
ponent, the HESIP system uses this rule in the
explanation generation module in order to gener-
ate a natural language description that will explain
the image prediction. Before we go into details
how this is done and how an explanation can be
modified, we first present an overview of the user
interface of the HESIP system in the following
section.

3 HESIP: User Interface

A prototype of a graphical user interface for the
HESIP system has been developed to illustrate the
interaction between a user and the system for gen-
erating and modifying explanations. As illustrated
in Figure 3, a user clicks on the “Choose File” but-
ton to select an image for predicting the image.
After selecting the image, it is displayed and a
new “Predict & Explain” button appears. When
the user presses on the “Predict & Explain” but-
ton, the HESIP system predicts the image in the
sub-symbolic component and learns a probabilis-
tic rule in the symbolic component to explain the
prediction. The prediction for the image and the
explanation of the prediction along with the prob-
ability of the explanation are displayed in a panel
(see Figure 3).

Because the interface of the HESIP system dis-
plays the predicted image, the prediction and the
explanation together, the user can relate and inspect
them immediately and can see whether the explana-
tion is correct or not. After showing the prediction
and the explanation to the user, two buttons “Mod-
ify Explanation” and “Confirm Explanation” are
displayed (see Figure 3). After inspection, the user
can either modify or confirm the explanation. If
the user feels that there is something wrong with
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Figure 3: The HESIP system is displaying the prediction of the selected image and the corresponding explanation
together with the probability.

the generated explanation, then they can fix the in-
correct information so that the HESIP system can
learn a better one.

After pressing the “Modify Explanation” button,
the HESIP system shows the explanation inside a
text editor that allows one to modify the explana-
tion generated by HESIP. When the user uses the
text editor to modify the explanation, the editor
guides the user using appropriate word suggestions
according to the grammar of the CNL used for gen-
erating the explanation (see Figure 4). There exist
several projects where predictive editors have been
developed to guide users for writing sentences in
a CNL (Guy and Schwitter, 2017; Franconi et al.,
2011; Bernstein and Kaufmann, 2006; Schwitter
et al., 2003). When writing a CNL sentence, the
next word is predicted and suggested to the user
by the predictive editor. Since the explanations are
expressed in a CNL, the text editor of the HESIP
system can be developed as a predictive editor sim-
ilar to the PENGASP system. The user can select a

word from the suggested list of words or can write
the word manually.

Figure 4: The HESIP system is showing suggestions to
the user during the modification of an explanation.

The altered parts of the explanation are displayed
as coloured text so that the user can easily identify
which parts of the explanation are altered. The
user clicks on the “Submit” button once they are
done with the modification. Afterwards, HESIP
learns a new explanatory rule for the predicted im-
age by taking the modified explanation into account
(see Section 5). The modified explanation is first
processed using the bi-directional grammar that
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Listing 4: Definite Clause Grammar Rule of the Bi-directional Grammar
np([mode:M, ctx:body, fcn:subj, def:_D, num:N, arg:X, clause:C1-C5, ante:A1-A4]) -->
det([mode:M, morph:O, num:N, def:D, clause:C1-C2]),
noun([mode:M, morph:_, num:N, arg:X, clause:C2-C3, ante:A1-A2]),
prep([mode:M, ctx:head]),
rnoun([mode:M, morph:_, num:N, arg:X, clause:C3-C4, ante:A2-A3]),
{ anaphora_resolution(det_noun_prep_rnoun, [M, D, X, C1, C4, C5, A1, A3, A4]) }.

produces a rule. Therefore, this rule is used to
obtain the modified information and the example
instances are updated accordingly in the symbolic
component. Finally, the symbolic component uses
these updated example instances to learn a new
explanatory rule. HESIP generates a new expla-
nation from the newly learned rule and displays it
on the interface. The HESIP system compares the
previous and the new explanation to identify the
differences between them. If any difference was
found, then the HESIP system shows that part as
coloured text in order to highlight what is different
with respect to the previous explanation. The mes-
sage “New explanation has been learned using the
feedback.” is displayed along with the new expla-
nation to assure the user that the explanation has
been learned taking the user’s modified explanation
into consideration. At this point, the user can press
the “Confirm Explanation” button to approve the
new explanation; otherwise, they can make further
modifications to the explanation.

4 Generating Explanations

In Section 2, we showed how the HESIP system
learns symbolic representation for generating ex-
planations. Now let us have a closer look at how
these explanations are generated. Once the explana-
tory rule is learned in the symbolic component, the
HESIP system generates an explanation for the
image prediction from the learned rule using a bi-
directional logic grammar. The generated explana-
tion can be processed with the same bi-directional
grammar to produce a rule that is semantically
equivalent to the learned rule from which the ex-
planation was generated. This is important for the
modification process, since we want to make sure
that the grammar produces correct rules after pro-
cessing the generated explanations as we will see
in the following section.

The learned rule needs to be pre-processed be-
fore it can be used by the grammar for generating a
natural language explanation. In the pre-processing
steps, the literals of the rule are first reordered in

a linguistically-motivated way; therefore, subject
grouping is applied to remove redundant informa-
tion in the reordered rule; and finally, variables that
serve as names are added to the rule if required
in order to resolve ambiguity of definite descrip-
tion. After pre-processing, HESIP sends the re-
constructed rule to the grammar that generates the
explanation. Listing 3 shows a reconstructed rule
for the learned rule (see Listing 2) of the potted
plant concept.

Listing 3: A reconstructed rule for the potted plant
concept after pre-processing.
class(A, object), type(A, potted_plant) :-
class(A, object),
relation(A, B, contain),
class(B, object), type(B, pot),
relation(A, C, contain),
class(C, object), type(C, plant),

class(B, object), type(B, pot),
relation(B, C, under),
class(C, object), type(C, plant).

For the reconstructed rule in Listing 3, the gram-
mar of the HESIP system generates the following
explanation: If an object contains an object of type
pot and contains an object of type plant and the
object of type pot is located under the object of type
plant then the object is of type potted plant.

Listing 4 shows an example of a grammar rule
that generates a noun phrase in the subject position
for a clause pattern that occurs in the body of a rule.
In the generation mode (mode:gen), this grammar
rule takes a class and a type (for example, class(B,
object) and type(B, pot)) as input and gener-
ates an indefinite noun phrase (an object of type
pot) or a definite noun phrase (the object of type
pot) as output. The argument clause holds a differ-
ence list (C1-C5) with the incoming and outgoing
literals. The argument ante holds a difference list
(A1-A4) with the incoming and outgoing accessible
antecedents. The call to anaphora resolution/2

updates these two difference lists. It is important to
note that exactly the same grammar rule can also
be used in the processing mode (mode:proc), since
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the grammar is bi-directional. In the processing
mode, the grammar rule takes the generated verbal-
isation as input and produces a rule as output that
is semantically equivalent to the rule from which
the verbalisation was generated.

5 Modifying Explanations

The bi-directional property of the grammar enables
the HESIP system to modify the generated explana-
tions. In Section 3, we have shown how a human-
in-the-loop can alter explanations that are displayed
to the user for explaining image predictions. In this
section, we show the steps (see Figure 5) that are
performed by the HESIP system in order to gen-
erate a new explanation from a newly learned rule
for the predicted image after modification by the
user. Note that the explanation modification steps
are completed in the symbolic component of the
HESIP system.

Let us assume that a user wants to see the pre-
diction and the explanation for an image shown in
Figure 2a that represents a potted plant concept. As
discussed in Section 2, HESIP selects sample im-
ages for a predicted image, extracts information of
the sample images, represents the sample image in-
formation using an ontology. Finally, HESIP uses
the information of the sample images as example
instances in the symbolic component to learn the
explanatory rule for explaining the image predic-
tion. Let us assume that HESIP uses the example
instances shown in Listing 5 and learns the explana-
tory rule in Listing 6 for explaining the prediction
of the image in Figure 2a. In this case, HESIP
generates the explanation “If an object contains
an object of type pot and contains an object of
type plant and the object of type pot is located on
the object of type plant then the object is of type
potted plant.” from the learned rule in Listing 6
using the bi-directional grammar after applying the
pre-processing steps (as discussed in Section 4).

Listing 5: Three example instances that are used to learn
the explanatory rule for the potted plant concept.
begin(model(pp1)).
object(pp1_obj1).
object(pp1_obj2).
object(pp1_obj3).
type(pp1_obj1, potted_plant).
type(pp1_obj2, pot).
type(pp1_obj3, plant).
relation(pp1_obj1, pp1_obj2, contain).
relation(pp1_obj1, pp1_obj3, contain).
relation(pp1_obj2, pp1_obj3, on).

end(model(pp1)).

begin(model(pp2)).
object(pp2_obj1).
object(pp2_obj2).
object(pp2_obj3).
neg(type(pp2_obj1, potted_plant)).
type(pp2_obj1, bottle).
type(pp2_obj2, body).
type(pp2_obj3, cap).
relation(pp2_obj1, pp2_obj2, contain).
relation(pp2_obj1, pp2_obj3, contain).
relation(pp2_obj2, pp2_obj3, under).

end(model(pp2)).

begin(model(pp3)).
object(pp3_obj1).
object(pp3_obj2).
object(pp3_obj3).
neg(type(pp3_obj1, potted_plant)).
type(pp3_obj2, pot).
type(pp3_obj3, plant).

end(model(pp3)).

Listing 6: A learned explanatory rule for the potted
plant concept.
type(A, potted_plant):1.0 :-
type(B, pot), object(B),
type(C, plant), object(C),
relation(B, C, on),
relation(A, C, contain),
relation(A, B, contain),
object(A).

When this explanation is displayed to a user,
then the user may want to modify the explanation
after noticing that the relation on between the pot
and the plant objects is not correct. Let us assume,
the user has changed the explanation to “If an ob-
ject contains an object of type pot and contains an
object of type plant and the object of type pot is lo-
cated under the object of type plant then the object
is of type potted plant.” where the preposition on is
replaced by under. After submission of the modi-
fied explanation, HESIP processes the explanation
using the bi-directional grammar to obtain a rule.
The generated rule for the modified explanation is
shown in Listing 7.

Listing 7: A rule obtained using the bi-directional gram-
mar by processing the modified explanation for the pot-
ted plant concept.
type(C, potted_plant) :-
class(C, object),
relation(C, A, contain),
class(A, object),
type(A, pot),
relation(C, B, contain),
class(B, object),
type(B, plant),
relation(A, B, under).

The rule (see Listing 7) derived from the altered
explanation is then compared with the rule previ-

154



Figure 5: Steps for modifying explanations in the HESIP system.

ously learned by HESIP (see Listing 6) to identify
the modifications. In this case, the user has updated
the relation information and the rule in Listing 7
reflects that change. After identifying the changes,
the amended information is updated in the example
instances. In our case, we update the relation from
on to under between the pot and the plant objects
for all positive example instances. We do not up-
date any information about the negative example
instances, since the user modified an explanation
in order to correct it and the positive example in-
stances represent the correct information for the
concept to be learned. Afterwards, an explanatory
rule is learned using the updated example instances.
The new rule is shown in Listing 8. We can see
that the new rule is different from the previous one
(see Listing 6) and that the preposition has been
replaced.

Listing 8: A new explanatory rule learned for the potted
plant concept after the explanation is modified by the
user.
type(A, potted_plant):1.0 :-
type(B, pot), object(B),
type(C, plant), object(C),
relation(B, C, under),
relation(A, C, contain),
relation(A, B, contain),
object(A).

Once the new explanatory rule is learned, HESIP
first pre-processes the new learned rule as discussed
in Section 4 that results in a reconstructed rule.
After that, HESIP verbalises the reconstructed rule
to obtain a new explanation for the prediction. For
this scenario, HESIP generates the new explanation
“If an object contains an object of type pot and
contains an object of type plant and the object of
type pot is located under the object of type plant
then the object is of type potted plant.” using the
new learned rule in Listing 8. The new explanation
is then displayed on the interface.

This example illustrates the explanation modifi-

cation steps for changing the relation information.
The HESIP system applies the same process to
generate a new explanation for updating any infor-
mation in the explanation. As mentioned earlier,
a predictive editor is used in the HESIP system
to modify an explanation that supports the user in
making a modification. After generating an ex-
planation for a prediction, it is possible that the
explanation may have the following incorrect infor-
mation and a user can update that information in
the explanation:

• The user can update the relation information
of an explanation as shown for the explanation
of the potted plant concept.

• The user can modify the object property infor-
mation (for example, the object colour infor-
mation of a concept).

• The user can update the object type informa-
tion in the conditional part of the explanation
sentence.

Practically, in an explanation sentence, the user
can update any content word introduced by the on-
tology used in the system. In the modification step,
the predictive editor will ensure that the explana-
tion is grammatically correct. In the case of updat-
ing the relation information, there should not be
any issue, since the relevant relation words will be
suggested by the predictive editor and the user can
select the relation from a list of words. However,
a problem may occur while updating any object
property or type information in an explanation. An
explanation may contain an anaphoric reference
to an object. If the user updates the property or
the type information of an object that is used as
an anaphoric expression, then the user has to make
sure that all the other parts of the explanation are
also updated. Let us consider an example from a
tower concept learning task (Rabold et al., 2019)
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to illustrate this scenario. In tower concept learn-
ing, an image consists of three squares with green,
blue and pink colours, and if the image contains a
square on top of another square without repeating
the same colour, then the image represents a tower
concept. For the tower concept, the HESIP system
may generate the following explanation: “If an ob-
ject A contains a blue object and contains a green
object and the blue object is located on the green
object then the object A is of type tower.” where
the user may update the colour green to pink only
for the first occurrence (a green object to a pink
object). This will lead to incorrect information in
the later part of the explanation (the noun phrase
the green object should be changed to the pink ob-
ject). The predictive editor usually will not identify
this information as incorrect, since the sentence is
grammatically correct. One possible solution to
overcome this problem is to design the predictive
editor in such a way that whenever a word related
to an anaphoric expression will be updated, the
editor will highlight all relevant anaphoric expres-
sions in the explanation and the user can then fix
the relevant words.

6 Evaluation

We evaluate the explanation generation and mod-
ification process of the HESIP system using four
datasets: potted plant concept learning, house con-
cept learning, tower concept learning and single
relation learning. The LIME-Aleph system has
used the tower concept learning and the single re-
lation learning tasks in order to demonstrate their
method. For the house concept learning task, an
image consists of a triangle and a square, and if
the image contains a triangle on top of a square,
then the image represents a house concept. For sin-
gle relation learning, if an image contains a green
square on the left side of a blue square, then the
image represents the left of relation. For evaluation,
we use 382 test images for the potted plant concept
and 1000 test images for all other concepts.

The explanation generation process is evaluated
in two ways. First, if the generated explanation
represents the literals that correspond to the literals
of the image, then we consider the explanation as a
correct one. Second, we check if the bi-directional
grammar works in both directions using a tech-
nique known as semantic-round tripping (Hossain
and Schwitter, 2020). Using this technique, we
store the formal representation R1 of an explana-

tion. The explanation is then processed by the
grammar that produces second formal representa-
tion R2. Therefore, we compare if R1 and R2 are
semantically equivalent. For the 1000 test images,
HESIP generates all correct explanations for single
relation learning and tower concept learning, and
999 correct explanations for house concept learn-
ing leading to the accuracy of 100%, 100% and
99.9%. For the 382 test images of potted plant
concept, HESIP generates 310 correct explanations
with an accuracy of 81.15%.

To evaluate the explanation modification process,
we take the test images for which the HESIP system
could not generate the correct explanations. HESIP
could not generated correct explanations for 1 test
image of the house concept and for 72 test images
of the potted plant concept learning. To check
if the modification process works correctly, we
first modify an incorrect explanation; therefore,
HESIP learns a new explanatory rule taking the
modified explanation into consideration and finally,
we check if the explanation generated from the
newly learned rule is correct or not.

Among the 72 test images of the potted plant
concept for which HESIP could not generate the
correct explanations, it generated 53 explanations
with wrong relations. We discussed one such expla-
nation in Section 5 where the explanation is learned
for the relation on instead of the relation under. For
all 53 explanations, we modified the explanations
with correct relations and follow the steps discussed
in Section 5 to generate the new explanations. We
found that the HESIP system generated the new
explanations with correct relations for all of them.
For two test images, we could not modify the ex-
planation using a correct relation, since the images
contain only plants and there was no pot in these
images. We also observe that there were 17 test
images of potted plants for which the HESIP sys-
tem learned incomplete explanatory rules and as a
result, the system could not generate suitable expla-
nations that can be modified to generate the correct
explanations. We also notice a similar problem
for one test image of the house concept for which
the HESIP system could not generate a suitable
explanation.

7 Conclusion

In this paper, we presented an explanation modi-
fication method for HESIP, a hybrid explanation
system for image predictions. Using the prototype
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of the HESIP system, we showed how a human
working in the loop can fix an incorrect explana-
tion generated by the system. For an image pre-
diction, the HESIP system learns an explanatory
rule and generates an explanation in CNL using a
bi-directional logic grammar. If the user decides
that the generated explanation is wrong, then they
can modify the explanation to fix it following the
grammar rules of the CNL. After modifying the
explanation, HESIP learns a new explanatory rule
taking the user’s modified explanation into account
and generates an explanation from the new learned
rule to better explain the image prediction. The
result of the evaluation shows that the modification
process of the HESIP system is very effective in
learning better explanations in the symbolic com-
ponent of the system.
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Abstract

Fine-tuning pre-trained language models for
downstream tasks has become a norm for NLP.
Recently it is found that intermediate train-
ing based on high-level inference tasks such
as Question Answering (QA) can improve the
performance of some language models for tar-
get tasks. However it is not clear if intermedi-
ate training generally benefits various language
models. In this paper, using the SQuAD-2.0
QA task for intermediate training for target
text classification tasks, we experimented on
eight tasks for single-sequence classification
and eight tasks for sequence-pair classification
using two base and two compact language mod-
els. Our experiments show that QA-based in-
termediate training generates varying transfer
performance across different language models,
except for similar QA tasks.

1 Introduction

The framework of fine-tuning pre-trained Language
models (LMs), especially transformer-based LMs,
for downstream tasks has shown state-of-the-art
performance on many natural language process-
ing (NLP) tasks (Devlin et al., 2019; Raffel et al.,
2020). It is believed that the pre-training stage
leads LMs to develop general-purpose abilities and
knowledge that can then be transferred to down-
stream tasks (Raffel et al., 2020).

To further improve the performance of pre-
trained LMs on target tasks, two novel training
approaches have been recently researched, namely
further pre-training and intermediate training. A
further pre-training stage for LMs (Gururangan
et al., 2020) is a stage between pre-training and
fine-tuning, which further pre-trains LMs on an
extra dataset using unsupervised objectives. It has
been found that further pre-training LM on the tar-
get domain (domain-adaptive pre-training) leads to
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Figure 1: We experiment SQuAD-2.0 as the intermedi-
ate training task for text classification tasks.

improved performance on target tasks (Gururangan
et al., 2020). Another effective transfer learning
approach named intermediate training that chooses
to train a LM model on an intermediate task via
supervised manner and then fine-tune it on target
tasks. This also leads to promising results across
various NLP tasks including text classification, QA
and sequence labeling (Phang et al., 2018; Vu et al.,
2020; Pruksachatkun et al., 2020).

Text classification is the problem of classify-
ing text into categories or classes which has been
widely studied. In terms of input, there are mainly
two forms of text classification problems: single-
sequence classification tasks (e.g., sentiment classi-
fication and topic classification) and pairwise tasks
(e.g., NLI and IR-related QA). In recent years, a
common approach to tackle text classification prob-
lems is to fine-tune a pre-trained LM on target text
classification tasks. Recently, advanced transfer
learning-based approaches have been proposed to
further improve the performance. For example, a re-
cent work (Sun et al., 2019) has studied how to fine-
tune BERT for text classification. They found that
further pre-training LM using data within-task or
in-domian can improve the performance of BERT
for text classification tasks.

More recently, cross-task transfer learning tech-
nique for text classification has been investi-
gated (Vu et al., 2020), and it is found that tasks that
require high-level inference and reasoning abilities,
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such as natural language inference and question an-
swering (QA) (Rajpurkar et al., 2018), are often the
best intermediate tasks for text classification tasks.
In a recent study (Pruksachatkun et al., 2020), it is
found that natural language inference and QA tasks
are generally helpful as intermediate tasks. Vu
et al. (2020) showed that SQuAD-2.0 is the most
favourable intermediate task for text classification.
There are only a few text classifications tasks and
only one language model (BERT) in their experi-
ments, making it hard to conclude that SQuAD-2.0
as the intermediate task can generally improve the
performance of all types of text classification tasks.

In this paper, we investigate the effective-
ness of intermediate training for four different
LMs – ELECTRA, RoBERTa, MobileBERT, and
SqueezeBERT)– using the most popular QA re-
source SQuAD-2.0 as the intermediate task for
eight target text classification tasks. We found that
intermediate training shows varying transfer per-
formance across different language models. Partic-
ularly contrary to previous thoughts, intermediate
training with high-level inference QA tasks does
not generally show positive transfer for low-level
inference text classification tasks.

2 Related Work

As a large quantity of labeled data is not always
available for training deep learning models, transfer
learning becomes quite important for many of NLP
problems. With transfer learning, widely available
unlabeled text corpora containing rich semantic and
syntactic information can be leveraged for learn-
ing language models, such as BERT (Devlin et al.,
2019), GPT (Brown et al., 2020), and T5 (Raffel
et al., 2020). Then, these language models are
fine-tuned on downstream tasks, which is the dom-
inant transfer learning method adopted in NLP at
the moment. The second way of using transfer
learning in NLP is to further pre-train pre-trained
language models in domain data before fine-tuning
on downstream tasks (Gururangan et al., 2020; Sun
et al., 2019). The third approach, which is the
method we investigate in our work, is to transfer
models fine-tuned on an intermediate task for a
target task (Pruksachatkun et al., 2020).

A recent work (Pruksachatkun et al., 2020) in-
vestigated when and why intermediate-task train-
ing is beneficial for a given target task. They
experimented with 11 intermediate tasks and 10
target tasks, and find that intermediate tasks re-

quiring high-level inference and reasoning abili-
ties tend to work best, such as natural language
inference tasks and QA tasks. Another recent
work (Vu et al., 2020) has explored transferability
across three types of tasks, namely text classifica-
tion/regression, question answering and sequence
labeling. They found that transfer learning is more
beneficial for low-data source tasks and also found
that data size, task and domain similarity, and task
complexity all can affect transferability.

3 Methods

To find out whether using SQuAD-2.0 as the inter-
mediate training task is generally helpful for text
classification tasks for different language models,
we experiment with 8 single-sequence text classifi-
cation tasks and 8 sequence-pair text classification
tasks, across four language models.

In SQuAD-2.0, each question is given a context
from which to infer the answer. A QA system is
expected to extract a span of text from that given
context. More specifically, given a context C which
consists of n tokens ([t1, t2, ...tn]) and a question
Q, a QA model is expected to predict the position
of the start and end tokens of the answer in the
context C. To correctly extract the answer span,
on one hand an SQuAD-2.0 model needs to learn
word-level dependencies between two sequences
(semantic similarity); on the other hand it learns
how to infer an answer from the context given a
question. Training a transformer-based LM for
SQuAD-2.0 intuitively enforces model’s ability on
inference and measuring semantic similarity, which
is shown in previous studies (Pruksachatkun et al.,
2020; Vu et al., 2020) to benefit text classification
target tasks at the lower, sequence-level, either clas-
sification of single sequences or classification of
the inference or similarity for sequence pairs.

When using transformer-based models for pair-
wise text classification, often a special token (e.g.,
[SEP]) is added between two sequences, similar
to the QA input. We are interested in whether
such a similarity between QA tasks and sequence-
pair text classification tasks can make a difference.
In terms of training procedure, we follow previ-
ous works (Phang et al., 2018; Vu et al., 2020).
Specifically, we first fine-tune a pre-trained LM on
SQuAD-2.0 (intermediate training stage) and then
fine-tune it on each text classification tasks.

When adopting transformer-based language
models (LM) for span extraction, we first load a
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Table 1: Dataset Statistics

Task #DataSize (Training/Testing) #Classes Metric Source

AGNEWS (Zhang et al., 2015) Topic Classification 120000/7600 0: 31900, 1: 31900, 2: 31900, 3: 31900 Accuracy News
SST2 (Wang et al., 2018) Sentiment Classification 67349/872 0: 30208, 1: 38013 Accuracy Movie Reviews
LIAR (Wang, 2017) Fake News Detection 10269/1283 0: 2248, 1: 2390, 2: 2215, 3: 1894, 4: 1871, 5: 934 F1 POLITIFACT.COM
OFFENSIVE (Barbieri et al., 2020) Offensive Speech Detection 11916/1324 0: 8595, 1: 4181 F1 Twitter
HATE (Barbieri et al., 2020) Hate Speech Detection 9000/2970 0: 6935, 1: 5035 F1 Twitter
COLA (Wang et al., 2018) Linguistic Acceptability 8551/1043 0: 2850, 1: 6744 Matthews Correlation Books and Journal
EMOTION (Barbieri et al., 2020) Emotion Detection 3257/1421 0: 1958, 1: 1066, 2: 417, 3: 1237 F1 Twitter
IRONY (Barbieri et al., 2020) Irony Detection 2862/784 0: 1890, 1: 1756 F1 Twitter
MNLI (Wang et al., 2018) Natural Language Inference 392702/9815 0: 134378, 1: 134023, 2: 134116 Accuracy Multiple Text Corpus
QQP (Wang et al., 2018) Quora Question Pairs 363846/40430 0: 255013, 1: 149263 F1 Quora
QNLI (Wang et al., 2018) Question Answering 104743/5463 0: 55079, 1: 55127 Accuracy Wikipedia
WIKIQA (Yang et al., 2015) Question Answering 20360/2733 0: 25192, 1: 1333 F1 Wikipedia
BOOLQ (Wang et al., 2019) Boolean Questions 9427/3270 0: 4790, 1: 7907 F1 Google search
MRPC (Wang et al., 2018) Semantic Equivalence 3668/408 0: 1323, 1: 2753 F1 News
RTE (Wang et al., 2018) Recognizing Textual Entailment 2490/277 0: 1395, 1: 1372 Accuracy News and Wikipedia
WNLI (Wang et al., 2018) Natural Language Inference 635/71 0: 363, 1: 343 Accuracy Winograd Schema Challenge

pre-trained LM and then add a span classification
head on top of it (a linear layer on top of the hidden-
states output). A span classification head eventually
generates two logits for each token, namely a logit
for the start token and a logit for the end token.
Learning a SQuAD-2.0 model performs classifica-
tion at the token-level – classify a token either the
start token or the end token. At inference stage,
predictions are made based on logits (taking the to-
ken with the largest start logits as a start token and
the token with largest end logits as an end token).

After we train a SQuAD-2.0 model, the next step
is to transfer it for text classification tasks. When
transferring a SQuAD-2.0 model, we only need to
change a span classification head to a sequence clas-
sification head. The transferred transformer with
a new sequence classification head will then be
fine-tuned on text classification tasks. The weights
of both the transferred SQuAD-2.0 model and the
classification head will be updated during the fine-
tuning stage. Therefore, the training process con-
sists of three training stages, namely pre-training
stage (pre-training a LM), intermediate training
stage (fine-tuning on SQuAD-2.0), and fine-tuning
stage (fine-tuning on each text classification tasks).

4 Experiments

4.1 Data and models

The dataset statistics and evaluation metrics for
each task are shown in Table 1. We selected
8 single-sequence text classification tasks and 8
sequence-pair text classification tasks, covering bi-
nary and multi-class classification problems, bal-
anced and imbalanced datasets, data-rich and data-
scarce tasks, and different data sources. We select
four pre-trained transformer-based LMs, namely
ELECTRA (Clark et al., 2019), RoBERTa (Liu
et al., 2019), MobileBERT (Sun et al., 2020),
SqueezeBERT (Iandola et al., 2020).

4.2 Results

Experiment results (averaged over three runs) are
reported in Table 2 and Table 3. Note that QQP,
QNLI, MNLI, MRPC, WNLI, RTE, and COLA are
sub-tasks of language understanding benchmark
GLUE (Wang et al., 2018) widely used for LM
evaluation. Our results are slightly different from
(lower than) those reported in their paper, as we
used the same setting of hyper-parameters (e.g.,
epoch, learning rate, input length, and batch size)
for all LMs rather than tuning hyper-parameters,
for fair comparison across all LMs.

According to Table 2, we can see that SQuAD2-
tuned models for single-sequence text classifica-
tion tasks have mixed results. On data-rich tasks,
such as AGNEWS and SST2, the performance
of SQuAD2-tuned models are slightly worse, ex-
cept for RoBERTa(T) and MobileBERT(T) which
have slightly better performance on SST2. On
data-poor tasks, such as IRONY and EMOTION,
transferred SQuAD2 models also tend to perform
worse. In case of multi-class problems, such as
AGNEWS and LIAR, the performance of mod-
els with SQuAD2 fine-tuning are not consistent.
For example, ELECTRA(T), MobileBERT(T) and
SqueezeBERT(T) improved the performance on
LIAR, while RoBERTa(T) did not. Overall, we
can see that SQuAD2-tuned models show varying
transfer performance across four language models
for single-sequence classification.

The results of sequence-pair text classification
are reported in Table 3. Sequence-pair tasks can be
roughly categorized into two groups, namely simi-
larity tasks (e.g., QQP, MPRC) and inference tasks.
Similarity tasks measure the semantic similarity
between two sequences, while inference tasks mea-
sure the semantic relations between two sequences.
Inference tasks have two sub-groups: natural lan-
guage inference (e.g., WNLI, MNLI and RTE)
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AGNEWS SST2 LIAR OFFENSIVE HATE COLA EMOTION IRONY

ELECTRA 94.46 94.61 26.63 83.48 48.01 67.65 82.59 71.96
ELECTRA(T) 94.59+ 94.26− 27.76+ 82.91− 44.90− 67.01− 81.86− 70.96−

RoBERTa 94.84 93.00 27.65 83.18 44.19 58.84 82.75 71.41
RoBERTa(T) 94.82= 94.15+ 27.35− 83.45+ 46.62+ 57.17− 81.79− 69.35−

MobileBERT 94.57 90.13 26.07 84.71 43.66 49.99 78.23 63.08
MobileBERT(T) 94.32− 91.05+ 26.27+ 85.01+ 45.57+ 50.25+ 79.72+ 62.36−

SqueezeBERT 94.68 89.90 27.26 84.09 41.97 44.50 78.72 66.07
SqueezeBERT(T) 94.09− 89.10− 27.72+ 83.61− 40.54− 35.37− 77.73− 66.44+

Table 2: Performance(%) for single-sequence text classification tasks. Models with SQuAD2.0 intermediate tuning
are denoted with T, +, = and − denote increase, equal and decrease in performance for SQuAD-tuned models.

QQP QNLI WNLI MNLI WIKIQA BOOLQ MRPC RTE

ELECTRA 91.69 92.09 47.88 88.52 46.04 84.16 88.60 77.61
ELECTRA(T) 91.45− 92.44+ 52.58+ 88.77+ 50.43+ 86.34+ 87.78− 78.34+

RoBERTa 91.24 92.04 56.34 87.69 43.41 84.22 89.56 75.33
RoBERTa(T) 91.14− 92.42+ 56.34= 87.65= 52.45+ 84.54+ 88.31− 79.18+

MobileBERT 89.09 89.18 46.48 82.63 40.18 77.65 83.69 56.68
MobileBERT(T) 88.94− 90.88+ 35.21− 82.45− 52.60+ 81.63+ 86.87+ 67.75+

SqueezeBERT 89.32 89.16 52.11 80.49 41.70 79.45 83.62 68.11
SqueezeBERT(T) 89.07− 90.13+ 39.90− 80.05− 50.89+ 79.98+ 85.31+ 66.79−

Table 3: Performance(%) for pairwise classification tasks. Models with SQuAD2.0 intermediate tuning are denoted
with T, where +, = and − denote increase, equal and decrease in performance for SQuAD-tuned models. Note the
positive transfer results on QA tasks QNLI, WIKIQA and BOOLQ.

and QA-related tasks (e.g., QNLI, WIKIQA and
BOOLQ). We can see that SQuAD2-tuned models
have consistently better performance for QA tasks
QNLI, WIKIQA and BOOLQ. A possible explana-
tion is when trained on SQuAD-2.0, if a question is
unanswerable, the index of [CLS] token is usually
set as the answer, which means that the represen-
tation of [CLS] token contains information about
whether a question has the answer in the given con-
text. On similarity tasks, SQuAD2-tuned models
have worse performance on QQP (data-rich), but
on MRPC (data-poor) SQuAD2-tuned models tend
to have mixed performance. On natural language
inference tasks, MNLI (data-rich) seems not benefit
from SQuAD2 fine-tuning, but the performance on
WNLI (data-poor) has shown some improvements.
Our experiments show that SQuAD2-tuned mod-
els have seen consistent success on QA tasks, but
generally sequence-pair tasks do not always benefit
from this intermediate training, whether data rich or
data-poor. Consequently, it is still hard to conclude
that using SQuAD-2.0 as the intermediate training
task is generally helpful for text classification.

5 Conclusion

We studied using the SQuAD-2.0 QA intermediate
task for target text classification across different
language models. Our experiments on eight clas-
sification target tasks and four language models
show that SQuAD2-tuned models do not generally
have better performance, whether single-sequence
or sequence-pair, or data-rich or data-poor settings.
This result highlights that high-level inference inter-
mediate tasks may not generally produce positive
transfer as previously thought. On the other hand,
SQuAD-tuned models always have positive trans-
fer results for QA tasks, which suggests further
research is needed to investigate if task similarity
rather than task complexity plays a significant role
for intermediate training.
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Abstract

We address the question of how to account
for statistical dependencies in an online pro-
cessing account of human language acquisi-
tion. We focus on descriptive adjectives in
English and Italian, and show that the acqui-
sition of adjectives in these languages likely
relies on tracking both forward and backward
regularities. Our simulations confirm that
forward-predicting models like standard Re-
current Neural Networks cannot account for
this phenomenon due to the lack of backward
prediction, but the addition of a small delay
(as proposed in Turek et al., 2019) endows the
RNN with the ability to not only predict but
also retrodict.

1 Introduction

Sensitivity to statistical regularities allows for effi-
cient lexical processing. As a sentence unfolds, the
experienced words convey information that humans
use to anticipate upcoming words, and gain thereby
processing speed. This has been evidenced in a
long tradition of studies with human reading data,
which reveal that words that are more predictable
given their context are more likely to be read faster
or even skipped (Ehrlich and Rayner, 1981).

The ability to track statistical regularities during
language processing is present at a very young age,
and can be recruited for language learning. Be-
fore their first birthday, infants are able to use this
skill to identify words in unknown languages cre-
ated with artificial (Saffran et al., 1996; Aslin et al.,
1998) or natural words (Pelucchi et al., 2009b),
demonstrating that this ability is useful for learning
language-like stimuli (see Saffran, 2020 for a re-
view). Studies have found that, before their second
year of age, toddlers already engage in predictive

processing to identify familiar words before they
are complete (Swingley et al., 1999; Fernald et al.,
2001), and are capable of anticipating upcoming
words (Fernald and Hurtado, 2006; Lew-Williams
and Fernald, 2007).

Given this relation between online processing
and learning, it is perhaps unsurprising that chil-
dren with more efficient lexical processing are also
those with faster vocabulary growth (Fernald et al.,
2006; Fernald and Marchman, 2012; Weisleder and
Fernald, 2013; Donnelly and Kidd, 2020). From
a cross-linguistic perspective, this suggests that ty-
pological variation on the statistical regularities of
different languages should be either equally tracked
during processing, or reflected in cross-linguistic
differences in learning.

In our work, we focus on one such typological
feature: in particular, word order of descriptive ad-
jectives in English (which occur pre-nominally),
and Italian (which appear mostly post-nominally,
but also pre-nominally). We first show that this
difference in word order bears a different pattern of
statistical dependencies in these languages, related
to the direction in which the words in these con-
structions are more predictable (forward in Italian,
backward in English). We find that, despite this
difference, children acquire nouns and adjectives
in each language at the same pace, showing no ad-
vantage of either direction. Thus, in line with the
relation between processing and learning sketched
above, a computational approach needs to accom-
modate statistical tracking of dependencies that are
both forward and backward. We then show limita-
tions of standard recurrent models in dealing with
backward dependencies, and propose the use of a
Delayed Recurrent Neural Network (Turek et al.,
2019) to capture this phenomenon.
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2 Related work

Word order constraints in languages may favor
regularities in either the forward direction (when
words are predictable from their earlier context) or
in the backward direction, (when words are more
predictable from the context occurring after them).
For instance, languages differ in whether they use
prepositions (e.g. ‘in Paris’) or postpositions (e.g.
‘Paris in’). The conditional probability of observing
‘in’ given ‘Paris’ is higher than that of observing
‘Paris’ given ‘in’ (since ‘in’ may be preceded or fol-
lowed by any location name); thus, the construction
with a postposition has higher forward predictabil-
ity, while the construction with a preposition is
more predictable in the backward direction.

Few studies focus on the role of backward depen-
dencies in human processing and learning. Peluc-
chi et al. (2009a) found that 8-month-old infants
can learn the words of an artificial language which
can only be identified based on conditional proba-
bilities in the backward direction. The experiments
reported in Perruchet and Desaulty (2008) demon-
strate that this ability is also present in adults. An-
other set of studies revealed that the word order
patterns in the native language of speakers create
learning biases that manifest when learning an ar-
tificial language. Using a carefully controlled ar-
tificial language that contained balanced cues in
the forward and backward direction, Onnis and
Thiessen (2013) found a significant difference be-
tween Korean and English speakers, manifested in
a tendency to rely on dependencies that are con-
sistent with the direction that best predicts con-
stituency in those languages (forward for Korean
and backward for English). 13 month-old children
learning English also exhibit this bias (Thiessen
et al., 2019).

French et al. (2011) reported successful simula-
tions of the experiments in Perruchet and Desaulty
(2008) with an autoencoder. This model used a
form of recurrence that was conditioned on the
reconstruction error, such that only internal repre-
sentations of items with low error would be fed
back to the model on the next step. Simulations
involving standard recurrence were not successful
in learning the backward dependencies (Perruchet
and Peereman, 2004).

3 Corpus Analysis

First we confirmed that the adjective order in
English and Italian was reflected in the condi-

tional probabilities between adjectives and nouns.
We extracted child-directed speech transcriptions
from all the English and Italian corpora avail-
able in CHILDES (MacWhinney, 2000), using the
childesr library (Sanchez et al., 2019) 1. We
focused on ages from 0 to 60 months old, and used
the lemmatized, lowercased version of the words.
Since part-of-speech information was not available
for all the data, we used the part-of-speech tagger
in spaCy 2 to annotate it. We applied additional
manual revision to remove some words that were
wrongly classified as descriptive adjectives 3. We
used the lemmatized version of the words since, un-
like in English, nouns and adjectives have number
and grammatical gender in Italian.

We selected all the adjective-noun pairs (for
both languages), and noun-adjective pairs (for Ital-
ian only). We downsampled the adjective-noun
pairs in English to be comparable in size to the
Italian data. For each word pair w1w2 we com-
puted its conditional probability as P (wi|wj) =
counts(w1w2)/counts(ctx), where i = 2, j =
1, ctx = w1 for forward conditional probabilities
and i = 1, j = 2, ctx = w2 for backward condi-
tional probabilities.

Figure 1 shows the distribution of the computed
probabilities. Whereas forward conditional proba-
bilities are significantly more reliable for adjectives
occurring in the Italian canonical noun-adjective
ordering (p < 0.01), the opposite is the case for
English, in which predicting backwards is signif-
icantly more reliable (p < 0.001). In the case of
the adjective-noun order in Italian, both forward
and backward probabilities are equally informa-
tive. This is consistent with the highly formulaic
nature of this syntactic pattern, since not all ad-
jectives and nouns occur in this construction. To
summarize, as expected, word order is reflected
in the conditional probabilities between adjectives
and nouns, at least in the canonical order: while
noun-adjective in Italian is favoured by forward
probabilities, adjective-noun in English is better
predicted backwards.

1http://childes-db.stanford.edu
2https://spacy.io. Models: it core news sm

and en core web sm.
3All the code used for data processing, analyses and mod-

els is available at https://github.com/rgalhama/
retro_adjs.
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Figure 1: Distribution of conditional probabilities
between words in adjective-noun and noun-adjective
pairs, for English and Italian. Asterisks indicate if p-
values are under significance levels (*: p < 0.05; **:
p < 0.01; ***: p < 0.001; N.S.: p > 0.05).

4 The Acquisition of Adjectives

Efficient processing correlates with faster vocabu-
lary growth. Thus, if there is a difference in process-
ing forward and backward dependencies, it should
be reflected in a cross-linguistic difference in vo-
cabulary acquisition (note that, once children start
producing adjectives, they rarely produce them in
incorrect word order, (Nicoladis, 2006)).

To analyze this, we used data collected with the
MacArthur-Bates Communicative Development In-
ventory forms (CDIs). These forms contain check-
lists of common early acquired words. Parents
complete the forms according to their estimation of
whether their child produced each of those words
at a given age. We used the ‘Words & Sentences’
CDIs from Wordbank (Frank et al., 2017)4, for
English and Italian. We excluded the forms in-
volving twins (as significant differences have been
observed in the language development of twins and
singletons, Tomasello et al., 1986). We used the
library in Wordbank to estimate the age of acquisi-
tion (AoA), considering that a word is acquired at
the age at which at least 50% of the children in the
sample produced a given word. Since differences
in the acquisition of nouns could have an effect on
the AoA of adjectives, we also report the estimated
AoA of nouns.

4http://wordbank.stanford.edu/

Figure 2: Age of Acquisition (AoA) of adjectives and
nouns, as estimated from the CDIs in Wordbank.

As can be seen in Fig. 2, there is no signifi-
cant difference between the AoA of adjectives and
nouns in each language, even though we find more
variability in Italian. This result suggests that chil-
dren learning Italian must be employing their for-
ward predictive skills, while children learning En-
glish need to draw upon their capacity to retrodict.

5 Do RNNs Retrodict?

To account for the results in the previous section,
models of online processing should predict but also
retrodict. We first present simulations with a Recur-
rent Neural Network (RNN, Elman, 1990), which
has a long tradition of use as a model of human se-
quential processing (with equivalent performance
to variants with gated recurrence Aurnhammer and
Frank, 2019). Although the RNN is trained exclu-
sively in the forward direction, it is necessary to
rule out the possibility that it can implicitly learn
patterns that capture the backward regularities.

We trained the RNN on the child-directed data
described in section 3, including sentences with
and without adjectives. We downsampled the En-
glish data to have comparable training data size
(41862 sentences). The RNN had an embedding
layer (size:100), a hidden recurrent layer (size:250),
and a softmax output layer over the whole vocab-
ulary (size: 7875 (English); 7520 (Italian)). The
model was trained to predict the next word in a
sentence. We used cross-entropy loss, and updated
the weights of the model with Stochastic Gradient
Descent, until the loss became stable (around 60
epochs). We evaluated the trained model based on
the entropy of the model prediction after the first
word in adjective construction. Results are shown
in Figure 3.

As can be seen, at the end of training, the RNN
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Figure 3: Entropy at the output layer of the RNN, after
the first word in each adjective-noun or noun-adjective
pair. Asterisks indicate if p-values are under signif-
icance levels (*: p < 0.05; **: p < 0.01; ***:
p < 0.001; N.S: p > 0.05).

is significantly less successful in learning English
than Italian (where success is quantified by low en-
tropy). These results are consistent with our expec-
tation: the model performs significantly worse for
English, which —as shown in our analyses of con-
ditional probabilities (section 3)— is less favoured
by forward probabilities in the adjective-noun con-
struction.

6 Retrodiction as Delayed Prediction

Our results indicate that a strictly forward model
like the standard RNN cannot account for learn-
ing backward dependencies. An enhancement that
could potentially capture the backward dependen-
cies is the addition of a bidirectional recurrent layer
(biRNN, Schuster and Paliwal, 1997). However,
this would not constitute a realistic account of hu-
man processing, as this model peeks into the con-
text which is not yet experienced.

Thus we explore an alternative account of retrod-
iction that functions as delayed prediction, based on
the model presented in Turek et al. (2019), known
as Delayed Recurrent Neural Network (dRNN).
The dRNN extends the standard RNN in the fol-
lowing way. In the RNN, when an input word wt

is presented at time t, the model predicts the next
word wt+1, and the weights are updated immedi-
ately. In the dRNN, the weight update is performed
at time t + d, where d is the pre-defined ‘delay’.
This entails that d extra words have been processed
by the network before the error is backpropagated.
This prevents the model from seeing future words
during prediction, but it can effectively see them

before the parameter update.
We implement a dRNN with the same hyperpa-

rameters as the RNN. We set a delay of one word
and evaluate the model with the same entropy mea-
sure after similar number of epochs as the RNN (60
epochs). Results are shown in Fig. 4. As can be
seen, there are no significant differences between
these languages, suggesting that this model can ac-
count for learning adjective constructions in both
languages.

Figure 4: Entropy of the dRNN with d = 1, after the
first word in each adjective-noun or noun-adjective pair.
NS. (Not Significant) indicates p-value> 0.05.

Turek et al. (2019) noted that, for a large enough
d, the dRNN can approximate the behavior of a
biRNN. Since the biRNN explicitly processes the
context after a word in the backward direction, sim-
ilar performance provides further indication that
the dRNN is learning backward dependencies. We
thus replicate our simulations with a biRNN. Table
1 summarizes the mean entropy for all the models.
As can be seen, the biRNN and the dRNN perform
almost identically.

RNN biRNN dRNN
ita: n-adj 3.01(1.08) 0.45(0.94) 0.42(1.20)
ita: adj-n 2.94(1.14) 0.15(0.27) 0.16(0.60)
ita: comb. 2.96(1.12) 0.26(0.61) 0.25(0.87)
eng: adj-n 3.33(1.29) 0.21(0.57) 0.24(0.92)

Table 1: Mean entropy (standard deviation) after the
first word in adjectival constructions in Italian (noun-
adjective, adjective-noun and both combined) and En-
glish (noun-adjective).

This is in line with the reported data, and offers
an explanation to why the AoA of children does
not show any differences despite the different word
order patterns: while a classic RNN account shows
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an asymmetry depending on the directions of pre-
dictability, by delaying the prediction error update,
the dRNN can take advantage of the backward de-
pendencies in English, and strikes a good balance
between the two directions in Italian.

7 Conclusions

Our work suggests that a full account of human
processing and learning needs to address typologi-
cal influences on distributional information, which
require tracking of both forward and backward sta-
tistical dependencies. While we cannot account for
these with standard RNN models, the dRNN can
capture both forward and backward dependencies,
offering a possible explanation for how humans are
able to predict but also retrodict.
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Abstract

Automatic post-editing (APE) is an important
remedy for reducing errors of raw translated
texts that are produced by machine transla-
tion (MT) systems or software-aided transla-
tion. In this paper, we present a systematic ap-
proach to tackle the APE task for Vietnamese.
Specifically, we construct the first large-scale
dataset of 5M Vietnamese translated and cor-
rected sentence pairs. We then apply strong
neural MT models to handle the APE task, us-
ing our constructed dataset. Experimental re-
sults from both automatic and human evalua-
tions show the effectiveness of the neural MT
models in handling the Vietnamese APE task.

1 Introduction

Recent research has placed significant advance-
ments for automatic machine translation (Wu et al.,
2016; Vaswani et al., 2017; Barrault et al., 2019).
The high-quality MT output has been widely
adopted by professional translators into their trans-
lation workflow to save time and reduce translation
errors (Zaretskaya et al., 2016).

Translating Chinese novels to Vietnamese is an
important task. In the last ten years, there are about
30K Chinese novels describing fiction stories, that
are available in Vietnamese with ∼ 80K active
readers and ∼ 600K novel chapter views daily
from the three most popular Vietnamese websites
for reading novels.123 But, translating the Chinese
novels to Vietnamese is still challenging. The rea-
son is that in fact, readers prefer reading the novels
translated using the traditional language style rather
than the modern language style used in news ar-
ticles (e.g. using “tiểu nữ nhi”little girl instead of

∗Most of the work was done before two authors joined
Oracle.

1https://truyencv.com
2https://truyenyy.com
3https://truyen.tangthuvien.vn

“cô bé”little girl). Note that current general-purpose
MT systems (e.g., Google Translate), trained on
modern language style-focused bilingual corpora,
cannot satisfy the reader preference.

The well-known workflow/guideline used for
translating the Chinese novels to Vietnamese con-
sists of three steps:4

• In the first step, the Chinese text is converted
into Sino-Vietnamese (i.e. Han-Viet)5 text using
a specialized software, such as TTV Translator.6

• In the second step, the Sino-Vietnamese text is
further smoothed by replacing predefined Sino-
Vietnamese phrases by dictionary-based Viet-
namese phrases. The core content of the Viet-
namese text generated as the output of the second
step—namely software-aided translated text—
can be generally understood by frequent readers
who are familiar with reading the translated text.
Note that the translated text does not fully follow
the Vietnamese grammar and vocabulary, thus
making it hard for new readers (and even fairly
often for the frequent readers) to understand de-
tails of the text content.

• In the final step, the translated text is manually
edited and polished following Vietnamese vo-
cabulary and grammar. Here, we refer to the text
generated as the output of the final step as the
human-corrected text that can be accessed easily
by readers with different reading levels.

Note that the final editing step is very time-
consuming due to the large amount of human-
manual work. Thus automatic post-editing (APE)

4http://www.tangthuvien.vn/forum/
showthread.php?t=142168&page=2

5https://en.wikipedia.org/wiki/
Sino-Vietnamese_vocabulary

6https://play.google.com/store/apps/
details?id=vn.tangthuvien.ttvtranslate&
hl=en_AU.
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might be involved in this final step, helping to re-
duce the human effort in editing the translated text
(Tatsumi, 2010). To the best of our knowledge,
there is no previous study on APE for Vietnamese.

In this paper, we formulate the APE problem for
Vietnamese as a monolingual translation task. We
first construct a large-scale dataset consisting of
translated and corrected sentence pairs. We then
use our dataset to train a state-of-the-art neural
MT model to automatically post-edit the translated
sentences, and compare these models under various
settings. Our contributions are summarized as:

• We are the first to tackle the APE task for Viet-
namese to automatically improve the quality of
the Vietnamese translated text of Chinese novels.
We create a large-scale dataset of 5M translated
and corrected sentence-level pairs extracted from
99.5K translated and corrected chapter-level pairs
from 183 novels.

• We empirically evaluate neural MT models us-
ing our dataset, including a fully convolutional
model (Gehring et al., 2017), “Transformer-base”
and “Transformer-large” (Vaswani et al., 2017).
We compare these models under automatic- and
human-based evaluation settings as well as in-
domain and out-of-domain schemes.

2 Our dataset

This section presents our large-scale dataset for the
Vietnamese APE task.

Dataset construction
In almost all cases, the original Chinese novels are
not publicly available to the readers of the Viet-
namese websites for reading novels, thus we can-
not access those Chinese novels’ texts. Of 30K
Chinese novels available in Vietnamese, there are
currently only 283 novels available in both Viet-
namese translated and corrected texts. We crawl
all of those 283 novels. There is a ground-truth
chapter-level alignment between translated and cor-
rected chapter-level pairs from each of the 283 nov-
els. We randomly sample from each novel 5 pairs
of translated and corrected chapters and employ
three annotators to manually evaluate the sampled
chapters’ editing quality on a 5-point scale. We se-
lect the top 183 novels having the highest average
points over their sampled chapters to be included
in our dataset.

We use all translated and corrected chapter-level
pairs from the top 183 novels, i.e. a total of 99.5K

chapter-level pairs. We then use RDRSegmenter
(Nguyen et al., 2018) from VnCoreNLP (Vu et al.,
2018) to segment each chapter text into individual
sentences. In each chapter, to align the translated
and corrected sentences, we compute an alignment

score α =
2× |I|
|T |+ |C| , where |T | and |C| denote the

numbers of tokens in the translated and corrected
sentences, respectively, while |I| denotes the size
of the intersection between them. Our sentence
alignment process has two phases:

• In the first phase, we align every translated and
corrected sentence pair with a score α >= 0.75,
i.e. alignment mode 1–1.

• In the second phase, for the remaining sentences,
using a threshold α >= 0.5, we only consider
two alignment modes 1–2 and 2–1 for one trans-
lated sentence aligning two adjacent corrected
sentences and two adjacent translated sentences
aligning one corrected sentence, respectively.7

The alignment modes 1–1, 1–2 and 2–1 account
for about 98% of the validation set.8 In the end, our
dataset consists of 5M (i.e. 5,028,749) translated
and corrected sentence-level pairs in Vietnamese.

Dataset splitting
Our dataset of 5M Vietnamese translated and cor-
rected sentence pairs is split into training, valida-
tion and test sets. We propose two splitting schemes
which are in-domain and out-of-domain. For the
in-domain scheme, the dataset is split based on the
novel chapters, in which the first 92.5% chapters
of each novel are used for training, the next 2.5%
are for validation, and the last 5% are for testing.
For the out-of-domain scheme, we split our dataset
into training, development and test sets such that
no novel overlaps between them. We select nov-
els for training, validation and test sets so that the
out-of-domain data distribution is similar to the
in-domain data distribution. Basic in-domain and
out-of-domain data statistics are detailed in tables
1 and 2, respectively.

3 Experimental setup

This section presents neural MT models as well as
their training details that we employ for evaluation.

7We concatenate two adjacent sentences into a single one.
8We do not include the remaining 2% unaligned sentences

into our dataset.
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Item
Training set Validation set Test set

Translated Corrected Translated Corrected Translated Corrected
#chapters(#novels) 92.2K (183) 2.5K (183) 4.8K (183)
#sentences 4.65M 126.7K 248.0K
#tokens 152.1M 143.7M 4.1M 3.9M 8.1M 7.6M
#tokens/sentence 32.7 30.9 32.7 31.0 32.6 30.8

Table 1: In-domain statistics of our dataset.

Item
Training set Validation set Test set

Translated Corrected Translated Corrected Translated Corrected
#chapters(#novels) 91.5K (128) 2.8K (28) 5.1K (27)
#sentences 4.66M 120.1K 245.6K
#tokens 151.3M 143.0M 4.1M 3.8M 8.9M 8.4M
#tokens/sentence 32.5 30.7 33.7 31.6 36.3 34.2

Table 2: Out-of-domain statistics of our dataset.

Neural MT models
We formulate the final step of editing and polish-
ing (i.e. post-editing) the translated sentence as a
(monolingual) translation task. In particular, the
translated and corrected sentences are viewed as
the ones in the source and target languages, re-
spectively. We employ strong neural MT models
to handle the task. The first model is the well-
known Transformer, in which we use its two vari-
ants of “Transformer-base” and “Transformer-
large” (Vaswani et al., 2017). The second model
is a fully convolutional model, named “fconv”,
consisting of a convolutional encoder and a convo-
lutional decoder (Gehring et al., 2017).

Training details
For each dataset splitting scheme, we train the mod-
els on the training set using implementations from
the fairseq library (Ott et al., 2019). For each
model, we employ the same model configuration as
detailed in the corresponding paper (Vaswani et al.,
2017; Gehring et al., 2017). We train each model
with 100 epochs with the beam size of 5. We use the
same shared embedding layer for both the encoder
and decoder components of a neural MT model as
both the translated and corrected sentences are in
Vietnamese. We apply early stopping when no im-
provement is observed after 5 continuous epochs on
the validation set. The model obtaining the highest
BLEU score (Papineni et al., 2002) on the valida-
tion set is then used to produce the final scores on
the test set.

We use standard MT evaluation metrics includ-
ing TER—Translation Edit Rate (Snover et al.,
2006), GLEU—Google-BLEU (Wu et al., 2016)

and BLEU, in which lower TER, higher GLEU,
higher BLEU indicate better performances.

4 Main results

Automatic evaluation
Table 3 shows in-domain and out-of-domain results
for each model as well as for the translated text. In
particular, with the in-domain scheme, the neural
MT models produce substantially higher GLEU
and BLEU scores and a lower TER score than the
translated text. This indicates that APE helps im-
prove the quality of the translated text. Among the
MT models, “Transformer-large” achieves the best
performance with the BLEU score of 49.686 which
is 1.098 and 1.753 higher than “Transformer-base”
and “fconv”, respectively.

Regarding the out-of-domain scheme, Table 3
also shows a similar trend. In particular, all three
neural MT models help improve the quality of
the translated text with the absolute improvements
of at least 7.5, 6.5, 9.0 points for TER, GLEU,
BLEU, respectively. We also note that although
“Transformer-large” consistently achieves the best
TER, GLEU and BLEU scores, the out-of-domain
score differences between the neural MT models
are not as substantial as in the in-domain scheme.

Human evaluation
To better understand the performances of neural
MT models, we conduct a human evaluation to
manually evaluate the output quality of the three
trained models. In particular, we collect a new set
of 1K translated sentences which are randomly se-
lected from 10 novels that are not in our dataset.
To perform APE, we then apply each of the three
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Model
In-domain Out-of-domain

TER↓ GLEU↑ BLEU↑ TER↓ GLEU↑ BLEU↑
translated 46.027 39.816 35.834 50.678 36.174 31.591
fconv 36.539 49.188 47.933 43.106 42.654 40.502
Transformer-base 35.882 49.803 48.588 42.970 42.726 40.588
Transformer-large 35.161 50.763 49.686 42.892 42.818 40.704

Table 3: Experimental results on the test sets. “translated” denotes the result computed in using the raw translated
sentence without post-editing correction.

models to produce a “corrected” candidate output
for each “translated” sentence, resulting in three
corrected candidates.9

We ask three annotators to independently vote
the most suitable sentence among the translated
sentence and its three corresponding corrected can-
didates (here, we do not show which sentence is
the translated one or corrected by which model
to the annotators), thus resulting in 3,000 votes
in total. The best model is “Transformer-large”
obtaining 1,405 votes (46.8%), compared to 815
votes (27.2%) for “Transformer-base”, 780 votes
(26.0%) for “fconv” and 0 vote for the translated
sentences. We measure the inter-annotator agree-
ments between the three annotators using Fleiss’
kappa coefficient (Fleiss, 1971). The Fleiss’ kappa
coefficient is obtained at 0.350 which can be inter-
preted as fair according to Landis and Koch (1977).
The results for the human evaluation are consis-
tent with the results produced by the three models
on the test sets, confirming the effectiveness of
“Transformer-large” for APE in Vietnamese.

5 Related work

Our work is the first one to automatically handle the
task of correcting the Vietnamese translated text
of Chinese novels. However, APE is not new and
has proved to be an effective approach to handle
the inaccuracies of raw MT output (Simard et al.,
2007; Lagarda et al., 2009; Pal et al., 2016; Nguyen
et al., 2017; Correia and Martins, 2019).

APE approaches cover two main research di-
rections including statistical MT-based models
(Simard et al., 2007; Lagarda et al., 2009) and neu-
ral MT-based models (Pal et al., 2016; Correia and
Martins, 2019). In particular, Simard et al. (2007)
propose a statistical phrase-based MT system to
post-edit the output of a rule-based MT system by
handling the typical errors made by the rule-based

9Note that we select the 1K translated sentences to ensure
that the three corrected candidates are different.

one. Likewise, Lagarda et al. (2009) utilize sta-
tistical information from a pre-trained statistical
MT model to post-edit the output of another sta-
tistical MT model. Pal et al. (2016) propose to use
Bidirectional LSTM encoder-decoder for APE and
found that it performs better than statistical phrase-
based APE. Correia and Martins (2019) present
an effective APE approach where they fine-tune
pre-trained BERT models (Devlin et al., 2019) on
both the BERT-based encoder and decoder.

6 Conclusion

We have presented the first work of APE for Viet-
namese to automatically correct the Vietnamese
translated text of Chinese novels. We construct the
first large-scale dataset of 5M translated and cor-
rected sentence-level pairs, extracted from 99.5K
translated and corrected chapter-level pairs from
183 novels, for the Vietnamese APE task. We then
compare three MT models using our dataset un-
der in-domain and out-of-domain data splitting
schemes. Experimental results from both the au-
tomatic and human evaluations show that the neu-
ral MT models help improve the quality of the
translated text. Specifically, “Transformer-large”
achieves the best performances w.r.t. the TER,
GLEU, BLEU scores and human votes, helping
to reduce the human effort in editing the trans-
lated novels, and serving as a strong model for fu-
ture research and applications. We also publicly
release our dataset and model checkpoints (for
research-only purpose) at: https://github.com/
tienthanhdhcn/VnAPE.
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Loı̈c Barrault, Ondřej Bojar, Marta R Costa-Jussà,

Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, et al. 2019. Findings of the 2019
conference on machine translation (wmt19). In
Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day 1),
pages 1–61.

Gonçalo M Correia and André FT Martins. 2019. A
simple and effective approach to automatic post-
editing with transfer learning. arXiv preprint
arXiv:1906.06253.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL, pages 4171–
4186.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N Dauphin. 2017. Convolu-
tional sequence to sequence learning. arXiv preprint
arXiv:1705.03122.

Antonio-L Lagarda, Vicent Alabau, Francisco Casacu-
berta, Roberto Silva, and Enrique Díaz-de Liaño.
2009. Statistical post-editing of a rule-based ma-
chine translation system. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, Companion Vol-
ume: Short Papers, pages 217–220.

J Richard Landis and Gary G Koch. 1977. The mea-
surement of observer agreement for categorical data.
biometrics, pages 159–174.

Dai Quoc Nguyen, Dat Quoc Nguyen, Cuong Xuan
Chu, Stefan Thater, and Manfred Pinkal. 2017. Se-
quence to sequence learning for event prediction. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 2:
Short Papers), pages 37–42.

Dat Quoc Nguyen, Dai Quoc Nguyen, Thanh Vu, Mark
Dras, and Mark Johnson. 2018. A Fast and Accu-
rate Vietnamese Word Segmenter. In Proceedings
of LREC, pages 2582–2587.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Santanu Pal, Sudip Kumar Naskar, Mihaela Vela, and
Josef van Genabith. 2016. A neural network based
approach to automatic post-editing. In Proceed-
ings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Pa-
pers), pages 281–286.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Michel Simard, Cyril Goutte, and Pierre Isabelle. 2007.
Statistical phrase-based post-editing. In Human
Language Technologies 2007: The Conference of
the North American Chapter of the Association for
Computational Linguistics; Proceedings of the Main
Conference, pages 508–515.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of association for machine transla-
tion in the Americas, volume 200. Cambridge, MA.

Midori Tatsumi. 2010. Post-Editing Machine Trans-
lated Text in a Commercial Setting: Observation and
Statistical Analysis. Dublin City University. Faculty
of Humanities and Social Science.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Thanh Vu, Dat Quoc Nguyen, Dai Quoc Nguyen, Mark
Dras, and Mark Johnson. 2018. VnCoreNLP: A
Vietnamese Natural Language Processing Toolkit.
In Proceedings of NAACL: Demonstrations, pages
56–60.

Yonghui Wu, Mike Schuster, et al. 2016. Google’s
Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation.
arXiv preprint, arXiv:1609.08144.

Anna Zaretskaya, Mihaela Vela, Gloria Corpas Pastor,
and Miriam Seghiri. 2016. Comparing post-editing
difficulty of different machine translation errors in
Spanish and German translations from English. In-
ternational Journal of Language and Linguistics,
3(3):91–100.

173



Antonio Jimeno Yepes, Ameer Albahem and Karin Verspoor. 2021. Using Discourse Structure to Differentiate Focus Entities from Background Entities in
Scientific Literature. In Proceedings of the 19th Workshop of the Australasian Language Technology Association. Dec 8–10, 2021.

Using Discourse Structure of Scientific Literature to Differentiate Focus
from Background Entities in Pathogen Characterisation

Antonio Jimeno Yepes1,2, Ameer Albahem1, and Karin Verspoor2,1

1School of Computing and Information Systems, University of Melbourne
2School of Computing Technologies, RMIT University

Melbourne, Victoria, Australia
antonio.jimeno@gmail.com, ameer.albahem@gmail.com, karin.verspoor@rmit.edu.au

Abstract
In the task of pathogen characterisation, we
aim to discriminate mentions of biological
pathogens that are actively studied in the
research presented in scientific publications.
These are the pathogens that are the focus of
direct experimentation in the research, rather
than those that are referred to for context or
as playing secondary roles. This task is an in-
stance of the more general problem of identi-
fying focus entities in scientific literature, in
which key entities of interest must be discrim-
inated from other potentially relevant entities
of the same type mentioned in the articles.

In this paper, we explore the hypothesis that fo-
cus pathogens can be differentiated from other,
non-actively studied, pathogens mentioned in
articles through analysis of the patterns of men-
tions across different segments of a scientific
paper, that is, using the discourse structure of
the paper. We provide an indicative case study
with the help of a small data set of PubMed ab-
stracts that have been annotated with actively
mentioned pathogens.

1 Introduction

Global monitoring of repositories of potentially
harmful biological materials is an important com-
ponent of ensuring the health and safety of our
populations. In this context, we are building an
information extraction system to identify informa-
tion related to experimentation with potentially dan-
gerous biological pathogens – e.g. viruses, bacte-
ria, and biological toxins – as well as to detect
facilities that may serve as repositories of harmful
pathogens. This system will systematically scan
open access data sets for evidence of research on
those pathogens, thereby supporting gathering of
information from public resources for biosecurity
purposes (Jarrad et al., 2015).

A key requirement for automated characterisa-
tion of research on pathogens using text-based in-

formation sources, including the scientific litera-
ture, is to identify pathogens that are actively stud-
ied. An actively studied pathogen is defined as an
organism that is subjected to direct physical experi-
mentation in the research.

Recognition of potentially relevant entities is rel-
atively advanced using biomedical named entity
recognition tools that detect biological nomencla-
ture such as the names of biological organisms (e.g.
as studied in the context of BioCreative (Smith
et al., 2008)). However, differentiating mentions of
actively studied organisms from other, background
or incidental mentions of organisms poses a deeper
natural language processing challenge. In the con-
text of chemical patents, it has been suggested that
only ~10% of chemical mentions play a major role
within the patent (Akhondi et al., 2019). It is insuf-
ficient to simply detect a mention of a potentially
relevant pathogen name; it must also be decided
whether that pathogen is a focus of the experiments.
The main goal of our pathogen characterisation
task is therefore to enable filtering out pathogens
that are mentioned in articles but not considered to
be actively studied in the described research.

Publications may refer to pathogens in various
ways. In addition to mentions in the context of di-
rect experimentation, pathogens may be mentioned
as part of background knowledge or in the context
of discussion or comparison. We propose that a key
element of identifying actively studied pathogens
is understanding where in a publication a pathogen
is described (e.g. in a Methods segment vs. in the
Background segment of the paper), and how the
pathogen is relevant to the research (e.g. mentions
of the pathogen being subjected to specific tests or
examinations that reveal experimentation).

In this paper, we therefore explore the hypothesis
that the context in a scientific paper where a poten-
tially relevant entity is mentioned can provide clues
about whether that entity is a focus (foregrounded)
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entity, or an entity in the background; our notion of
an actively studied entity assumes that it is a focus
of the research described in a paper.

We investigate this hypothesis by comparing the
distribution of focus and background entities across
discourse segments, and apply association rule min-
ing to identify combinations of segments that are
relevant to identify focus entities. We present a
small case study illustrating the proposed method-
ology, providing preliminary evidence of the value
of discourse structure – consideration of where en-
tities are mentioned – for identifying focus entities.

2 Related work

Identifying salient entities is a relevant component
of information retrieval and text summarisation.
The study of discourse structure has been suggested
in previous work on entity salience (Boguraev and
Kennedy, 1999; Walker and Walker, 1998). The
work of (Dunietz and Gillick, 2014) evaluates a
comprehensive set of features, showing that the
discourse structure and centrality may support pre-
dicting entity salience. Our task differs in that we
adopt a narrower focus specifically on identification
of actively studied pathogens in scientific research
papers.

Pathogen characterisation has been studied
in recent shared tasks, such as the Bacteria
Biotope task (Bossy et al., 2019). The tool Geo-
Boost (Tahsin et al., 2018) also addresses the iden-
tification of entities from GenBank, which includes
largely information about viruses and bacteria. The
main role of GeoBoost is to identify the location of
these biological entities, which requires perform-
ing natural language processing tasks in addition to
combining information from NCBI resources. This
work does not address saliency of entity mentions.

In our work, we evaluate discourse features
for direct identification of actively researched
pathogens, covering a broad set of pathogen types.

3 Datasets

In our experiments, we constructed a dataset based
on information obtained from the Biological Mate-
rial Information Program (BMIP)1 of the Defense
Threat Reduction Agency (DTRA)2.

1BMIP media article:
https://globalbiodefense.com/2017/05/08/
bmip-pathogen-repositories-worldwide

2https://www.dtra.mil/

3.1 Pathogen entity list

We were provided with a list of all pathogens
tracked in the BMIP database, which we refer to
as the BMIP list. To align these pathogens to pub-
licly available resources, and normalise their repre-
sentation, we mapped each pathogen in the list to
the NCBI Taxonomy (Federhen, 2012) via direct
lookup. These pathogens include viruses, bacte-
ria, viroids, fungi and protozoa. In addition, there
are mentions of toxins and PrPSc prions that were
assigned a custom identifier.

3.2 Gold standard dataset

We have a small initial gold standard dataset that
we use for our investigation. It consists of manual
annotations of relevant pathogens over PubMed
citations. Relevance is defined here as evidence of
an actively studied pathogen, or focus entity.

This gold standard contains 87 PubMed cita-
tions (publication metadata) including titles and
abstracts, each with an associated list of relevant
pathogens. Out of these 87 citations, 35 have no
actively studied pathogen, so we consider 52 cita-
tions in this study. There are a total of 69 relevant
pathogen mentions, corresponding to 32 unique
pathogens (individual NCBI Taxonomy IDs), iden-
tified across the remaining 52 articles. The maxi-
mum number of relevant pathogens annotated for
a document is 5. Nineteen (19) pathogens are an-
notated only once; the pathogen with the largest
number of annotations is H1N1, with total fre-
quency of 11 (i.e. 11 citations are annotated with
this pathogen). Most pathogens in the gold stan-
dard belong to the Influenza virus family.

4 Methods

We approach identifying focus entities of scientific
articles as a two-stage process: pathogen identi-
fication and pathogen characterisation. Here, we
describe our approach to each stage.

4.1 Pathogen identification

In the pathogen identification stage, the objective
is to find all pathogens mentioned in a citation, ir-
respective of whether they are focus or background
entities. Despite some pathogen mentions are avail-
able in author keywords and MeSH indexing, this
information is sparse within the citations in MED-
LINE or not mentioned at all. Both dictionary
lookup and machine learning models learned from
annotated data are possible for this step. Lacking
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annotated data specifically for the BMIP pathogen
list, we utilise the dictionary-based ConceptMapper
tool (Tanenblatt et al., 2010), found by Funk et al.
(2014) to outperform other methods. We leverage
the NCBI Taxonomy ConceptMapper annotation
pipelines for the CRAFT corpus3. We construct
the dictionary based on the BMIP list of relevant
pathogens, mapped to the NCBI Taxonomy using
the database downloaded from the OBO Foundry4.

The BMIP list of pathogens also includes men-
tions of pathogens that are either toxins gener-
ated by pathogens or PrPSc prions, which are pro-
teins with a pathological folding. Toxin mentions
are identified using regular expressions that have
higher recall than just using a dictionary matching
while obtaining the same level of precision.

Using these strategies for identifying pathogens,
we detect 49 mentions annotated as focus entities
(out of the 69 from the 52 citations) and 9 mentions
that we treat as background entities.

4.2 Pathogen characterisation

Given the list of pathogens in an abstract, the next
step is to characterise which of these pathogens are
focus entities, i.e. actively researched.

As described before, we hypothesise that focus
pathogens are more likely to appear in some seg-
ments than others (e.g. in Methods segments vs.
Fact segments), and that therefore the mention pat-
terns of actively studied (focus) pathogens across
segments are different from the mention patterns
of not-actively studied (background) pathogens.

To model mention patterns, we adopt the method
of association rule classification Liu et al. (1998)5

to infer rules based on which discourse segments
a pathogen is mentioned in that predict that the
pathogen is a focus entity.

We treat the event of mentioning a pathogen once
or more in a scientific article as a transaction event.
Each transaction consists of items corresponding to
the discourse structure labels of the different men-
tions of the pathogen. For instance, if the pathogen
Bacillus anthracis is mentioned once in the title
and once in the methods segment of a citation, we
add a transaction to our dataset with the itemset
(TITLE, METHOD). Given this transaction dataset,
we employ association rule mining to mine top

3https://github.com/UCDenver-ccp/
ccp-nlp-pipelines

4OBO NCBI taxonomy: http://www.obofoundry.
org/ontology/ncbitaxon.html

5Using: https://pypi.org/project/pyarc/

association rules for focus entities.
The class association rules (CAR) are obtained

using a two-part algorithm. First, rules are gener-
ated using the APRIORI algorithm (Agrawal et al.,
1994). The algorithm generates association rules
that have enough support and confidence. The rules
are generated without any target classification task
under consideration, i.e. mention patterns for both
focus and background entities are considered.

In the second part, the generated rules are used
to build a classifier using the CAR M1 algo-
rithm (Agrawal et al., 1994). The rules are sorted
by confidence and then by support. Following this
order, if a rule correctly classifies examples in the
instance set, the rule is selected and those exam-
ples are removed. The total number of errors is
recorded for the rule as the error of the rule on
the instance set and the error of the default class
(selected using the majority class of the remaining
examples). Additional rules are selected using the
remaining examples and this process continues un-
til there are no more rules or examples. From the
set of selected rules, the one with the lowest total
numbers of errors is identified and the rules after
that one are discarded, which reduces the error of
the set. A rule is added at the end that returns the
default class, which is the most frequent class not
covered by the selected rules.

4.3 Discourse segment labeling

Ideally, we would hope to access articles with ex-
plicit discourse structure such as the introduction,
methods, and results headings. However, such la-
belling is available for less than one quarter of
PubMed abstracts (Jimeno Yepes et al., 2013). We
therefore use automated discourse structure tagging
to label segments in each abstract.

We build on existing work in scientific discourse
tagging (Dasigi et al., 2017), which utilises a deep
learning sequence-labeling model that identifies
structure within experiment narratives in the scien-
tific literature. A seven-label taxonomy is adopted
from de Waard and pan der Maat (2012), containing
GOAL, FACT, RESULT, HYPOTHESIS, METHOD,
PROBLEM, and IMPLICATION. Li et al. (2019,
2021) extends the previous work, training on their
SciDT dataset that contains 634 paragraphs and
6124 clauses. Their method combines a SciB-
ERT (Beltagy et al., 2019) feature generator with
a recurrent neural network to predict the scientific
discourse labels.
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Rule Sup Conf
method=1,title=1 0.21 1.00
title=1,result=1,goal=0 0.21 1.00
implication=1 0.17 1.00
title=1,result=1,fact=0 0.14 1.00
method=1,fact=1 0.10 1.00
title=1,fact=0,goal=1 0.10 1.00
title=1,fact=0 0.34 0.95
fact=1,goal=0 0.26 0.94
method=0,result=1,goal=0 0.24 0.93

Table 1: CAR M1 rules predicting that the pathogen is
a focus entity. A value of 1 indicates that the pathogen
appears in the corresponding discourse segment, while
0 indicates that the pathogen is absent from that type of
segment. Rules have been selected and sorted based on
the confidence (Conf) and support (Sup) values.

The scientific discourse tagger obtained an F1
of 0.841 on the SciDT dataset. They also added
NONE label to allow for none of the above. We
apply the scientific discourse tagger to assign one
of the eight discourse labels to each sentence in an
abstract. The TITLE label was assigned using the
available citation metadata.

5 Results

We ran the CAR M1 algorithm on our data set an-
notated with pathogen mentions and present the
inferred rules in Table 1. There are 9 rules that pre-
dict focus entities. The first rule means that if the
pathogen is mentioned in the METHOD and TITLE

segments of the citation, then it is a focus pathogen.
The second rule means that if the pathogen is men-
tioned in the TITLE and RESULT segment but not
in the GOAL segment, then it is a focus pathogen.

Doing an analysis of the rules, we find that most
of the rules indicate that a pathogen being men-
tioned in the title is a sign that it is a focus pathogen,
which is expected since the title denotes the most
important concepts of the article. The rules also
indicate that a mention of a pathogen in the re-
sults segment is relevant to the classification of
the entity as a focus pathogen. Consideration of
combinations of segments is more effective to iden-
tify focus entities than occurrence in any individual
segment, apart from IMPLICATION.

Table 2 shows the frequency of pathogen men-
tions in the various discourse segments. We find
that the focus pathogens are significantly more
prevalent in the TITLE, RESULT and FACT seg-

Background Focus
Label S. Freq % Freq %
METHOD 73 3 33.33 17 34.69
RESULT 186 4 44.44 29 59.18
FACT 51 2 22.22 21 42.86
IMPLICATION 44 0 0.00 10 20.41
GOAL 25 3 33.33 15 30.61
PROBLEM 8 0 0.00 3 6.12
HYPOTHESIS 15 0 0.00 1 2.04
TITLE 52 3 33.33 39 79.59
NONE 3 0 0.00 1 0.00
Pathogens - 9 100.00 49 100.0

Table 2: Frequency (Freq) of the mentions of back-
ground and focus entities in various discourse segments
of PubMed citations. The percentages indicate the pro-
portion of pathogen mentions of each type occurring in
each scientific discourse segment. “S.” stands for the
overall number of sentences per type in the 52 citations.

ments, which correlates with the predicates of the
inferred rules. Background pathogens seem to be
equally prevalent in both the METHOD and GOAL

segments when compared to the focus pathogens.
Some of the labels, such as HYPOTHESIS, PROB-
LEM and NONE, have low frequency in our data
set and did not participate in any of the generated
rules.

6 Conclusion

We have proposed an approach to the problem
of detecting focus versus ground entities using
class association rules over entity mentions in dis-
course segments, specifically examining its use for
pathogen characterisation. Focus pathogens tend to
appear in the title and results segments of abstracts,
where the key findings of research are highlighted.
Our case study suggests that discourse information
provides valuable cues to identify focus pathogens.

Given the small-scale data we have available,
this work is only indicative of the promise of the ap-
proach. We are developing a larger data set, which
will support comprehensive exploration of more
refined rules. This data set would also support the
exploration of additional existing methods, such as
centrality and transformer based methods.
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Abstract

Hierarchical document categorisation is a spe-
cial case of multi-label document categorisa-
tion, where there is a taxonomic hierarchy
among the labels. While various approaches
have been proposed for hierarchical document
categorisation, there is no standard benchmark
dataset, resulting in different methods being
evaluated independently and there being no
empirical consensus on what methods perform
best. In this work, we examine different combi-
nations of neural text encoders and hierarchical
methods in an end-to-end framework, and eval-
uate over three datasets. We find that the perfor-
mance of hierarchical document categorisation
is determined not only by how the hierarchical
information is modelled, but also the structure
of the label hierarchy and class distribution.

1 Introduction

Document categorisation is a core task in infor-
mation retrieval and natural language processing,
whereby documents are categorised relative to a
pre-defined set of labels. While the majority of
research on document categorisation assumes a flat
label structure, in practice in large-scale document
categorisation tasks, there is often hierarchical la-
bel structure, in the form of either a tree or directed
acyclic graph (Zhou et al., 2020; Azarbonyad et al.,
2021), where “child” labels inherit the properties
of their parents. The goal of hierarchical document
categorisation is to classify documents into a set
of labels, where there is a hierarchical relationship
among the labels.

Hierarchical document categorisation methods
explicitly capture the label structure during train-
ing. There has been a resurgence of interest in doc-
ument categorisation in recent years, in part driven
by breakthroughs in representation learning and
pre-trained language models (Mikolov et al., 2013;
Pennington et al., 2014; Peters et al., 2018; Kim,

2014; Wang et al., 2017; Devlin et al., 2019), which
generate more expressive, general-purpose repre-
sentations, thereby leading to performance gains
across a range of NLP tasks. Despite this, there
has been relatively little recent work specifically on
hierarchical document categorisation. What recent
work does has varied wildly in the choice of text
encoder and dataset, with no systematic, controlled
cross-dataset evaluation to be able to make solid
conclusions as to whether the reported performance
gains are attributable to the proposed hierarchical
document categorisation method or just the text
encoders used. Our work focuses on examining
the capacity of existing methods dealing with la-
bels with a hierarchical structure, which is different
from the work of Yang et al. (2016), which focuses
on modelling documents in a hierarchical way to
perform classic document classification task.

In this work, we carry out systematic evaluation
of a range of contemporary hierarchical document
categorisation approaches, using a range of neural
text encoders, based on three document collections
with hierarchical label sets.

2 Related Work

Hierarchical document categorisation methods can
be grouped into: flat approaches, local approaches,
global approaches, and hybrid methods, based on
how they utilise the label hierarchy.

2.1 Flat Approaches

Flat approaches (Eisner et al., 2005; Freitas and
Carvalho, 2007) simply ignore the label hierarchy,
and assume all classes are independent. As such,
they are unable to capture the label structure and
are poor at handling mutual exclusivity, especially
among sibling nodes in multi-label categorisation
tasks.
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2.2 Local Approaches

Local approaches generally make predictions top-
down recursively, along paths in the label hierarchy.
They can be divided into three groups (Silla and
Freitas, 2011): a local classifier per node (LCN),
a local classifier per parent node (LCPN), or a lo-
cal classifier per level (LCL). In LCN, there is a
binary classifier for each node, which determines
whether a document belongs to that node or not
(Eisner et al., 2005; Freitas and Carvalho, 2007).
In contrast, LCPN (Davies et al., 2007; Secker et al.,
2010; Shimura et al., 2018; Banerjee et al., 2019)
employs a multi-class classifier at each parent node,
predicting which child node the document should
be assigned to. Compared with LCN, LCPN sig-
nificantly reduces the number of local classifiers,
and can be applied in either single-label or multi-
label settings. In contrast, LCL (Kowsari et al.,
2017) employs a multi-class classifier at each layer
in the hierarchy. This method usually fails to cap-
ture parent–child information between layers. For
all three approaches, a top-down approach is of-
ten used to avoid label inconsistency, making them
prone to error propagation.

2.3 Global Approaches

Global approaches (Mao et al., 2019; Zhou et al.,
2020) optimise across all labels simultaneously,
taking the label hierarchy into account. The sim-
plest global approach converts the hierarchical cat-
egorisation task into a multi-label categorisation
task, where each original label is replaced with its
ancestors and itself. Similar to local approaches,
this potentially results in label inconsistency during
inference. A more popular global approach is to
include a loss term which captures the hierarchy
in some way (Gopal and Yang, 2013; Peng et al.,
2018), such as an entropy term (Clare and King,
2003) or distance metric (Vens et al., 2008). For
example, Zhou et al. (2020) proposed a hierarchy-
aware structure encoder to model the label hierar-
chy as a directed graph. It can capture global hi-
erarchical information as it models both top-down
and bottom-up label dependencies. Moreover, all
nodes are linked with each other, meaning that pair-
wise co-occurrence can be modelled in addition to
parent–child relationships.

2.4 Hybrid Methods

There are also hybrid methods which combine
the methods mentioned above (Wehrmann et al.,

2018; Huang et al., 2019). For example, Gopal and
Yang (2013) used simple recursive regularisation to
encourage parameter smoothness between linked
nodes, with positive results independently reported
by Peng et al. (2018) and Zhou et al. (2020).

3 Experiments

3.1 Models

In our work, each model consists of a text encoder
and a hierarchical method, where the text encoder
is used to obtain text representations, and the hier-
archical method makes predictions with the assis-
tance of hierarchical label information.

3.1.1 Text Encoders
TextCNN (Kim, 2014): A CNN made up of con-
volutional and max-pooling layers. In this work,
we apply convolution kernels with width 2, 3, and
4 (3 for each width size) to word embeddings, and
use a max-pooling layer.

TextRNN: A single-layer Bi-LSTM (Wang et al.,
2017) with a cell size of 64 where the concatenated
hidden state at the last timestep makes up the docu-
ment representation.

TextRCNN: A combination of TextCNN and
TextRNN, where we first employ a single-layer
Bi-LSTM with a cell size of 64 and obtain out-
puts across all timesteps by concatenating outputs
from both directions, then apply convolution ker-
nels with width 2, 3, and 4 (3 for each width size),
followed by a max-pooling layer. This method has
achieved state-of-the-art on RCV1 for both flat and
hierarchical categorisation (Zhou et al., 2020).

BERT (Devlin et al., 2019): The hidden state
of “CLS” from BERT is used as the document
representation, using the base-uncased version.

3.1.2 Hierarchical Methods
Flat: Baseline method where all nodes are treated
as candidate classes, ignoring hierarchical informa-
tion.

Recursive Regularization (RR: Gopal and Yang
(2013)): A hybrid method, utilising simple recur-
sive regularisation to encourage parameter smooth-
ness between linked nodes.

Hierarchical Multi-Label Classification Net-
works (HMCN: Wehrmann et al. (2018)): A
hybrid local/global approach, where each level in
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Dataset |L| Avg(|L|) Depth Training Test

RCV1 103 3.24 4 23,149 592,688
SHINRA 237 3.16 4 390,433 43,382
WoS 141 2.00 2 42,286 4,699

Table 1: Statistics of datasets: “|L|” is the total number of labels; “Avg(|L|)” is the average number of labels per
document; and “Depth” indicates the maximum hierarchy depth.

the model corresponds to a level in the label hierar-
chy. The global model consists of multiple linear
layers with ReLU as the activation function. The in-
put to each layer includes the original sequence and
the output from its immediate last layer, where the
hidden size for each layer is 384 as in Wehrmann
et al. (2018). Passing information from the first
layer to the last layer, we obtain the global out-
put. In addition, the output from each layer is also
fed into a local layer, where the hidden size is the
number of nodes/classes in the corresponding hier-
archical level. Then the sum of the global output
and concatenated local outputs is fed into a sigmoid
function to predict the classes.1

Hi-GCN (Zhou et al., 2020): An end-to-end
hierarchy-aware global model that extracts the la-
bel hierarchy information to achieve label-wise text
features. A graph convolutional network is used as
the structure/hierarchy encoder, where each edge
represents the correlation between a pair of nodes.
There are three types of edges in the graph: top-
down, bottom-up, and self-loop edges, where the
weights for bottom-up and self-loop edges are 1,
and the weights for top-down edges are determined
by the predefined hierarchy and dataset distribu-
tions. To obtain label-wise text features, hierarchi-
cal text feature propagation is used. Specifically,
the text representation from a text encoder is re-
shaped to act as the node input, which is updated
through the hierarchy-aware structure encoder. The
output of a node is based on its neighbourhood: it-
self, its child nodes, and its parent nodes. The
output hidden state is then fed into the final classi-
fier.

1In the original work of Wehrmann et al. (2018), the au-
thors first apply the sigmoid function to the global output and
local outputs, respectively, resulting into extremely bad per-
formance in some settings, indicating that applying sigmoid
separately to the global and local outputs is not as effective as
applying it to the combined global and local information.

3.2 Datasets

We evaluate each text encoder+hierarchical method
combination in an end-to-end framework over three
datasets: RCV1 (Lewis et al., 2004), SHINRA
(Sekine et al., 2020), and WoS (Kowsari et al.,
2017). Here, RCV1 is a collection of news arti-
cles published by the Reuters News between 1996
and 1997. SHINRA contains English Wikipedia
articles from the SHINRA2020-ML shared-task
(Sekine et al., 2020), where each Wikipedia article
is labelled according to a fine-grained named entity
label set known as Extended Named Entity (ENE).2

WoS is a collection of abstracts from academic pa-
pers across different research domains and areas.
The statistics of each dataset is given in Table 1.
Looking at the document distributions in terms of
label hierarchy levels, we find that the relationship
between the number of documents and label classes
conforms to a power-law function for RCV1 and
SHINRA, especially at lower (2+) levels. For WoS,
the number of documents per class at level 1 and 2
is relatively balanced.

3.3 Evaluation Metrics

We evaluate model performance in terms of Micro-
F1 and Macro-F1, two standard evaluation metrics
for document categorisation. Micro-F1 is instance-
level F-score, and thereby gives more weight to
frequent labels. Macro-F1 is class-level F-score,
and gives equal weight to all labels.

3.4 Experimental Settings

Each document is truncated/padded to a fixed
length of 256 tokens, where stopwords are removed
for all models except BERT. For all models except
BERT, we use 100-dimensional pre-trained word
embeddings from GloVe (Pennington et al., 2014)
to initialise the word embeddings. The vocabu-
lary contains at most 100,000 words ranked by
frequency. For OOV words, the word embeddings
are randomly initialised. We train all models with

2http://ene-project.info/ene8/?lang=en
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Dataset RCV1 SHINRA WoS

Method Micro Macro Micro Macro Micro Macro

TextCNN

Flat 75.63 45.24 86.94 56.46 83.41 77.00
RR 75.56 50.81 85.31 56.62 83.51 77.32
HMCN 78.22 43.49 87.03 56.28 80.24 74.38
Hi-GCN 77.80 51.34 86.91 58.61 84.09 77.37

TextRNN

Flat 78.46 49.18 88.43 60.11 83.72 77.55
RR 78.52 55.48 87.22 60.07 83.57 78.08
HMCN 80.52 48.97 88.71 59.76 82.09 75.90
Hi-GCN 81.57 56.29 88.74 61.20 84.11 77.95

TextRCNN

Flat 79.92 51.54 88.12 60.34 84.05 77.95
RR 79.81 56.37 88.06 60.32 84.14 78.03
HMCN 81.13 50.44 88.56 59.71 82.86 76.11
Hi-GCN 82.96 58.05 88.69 61.05 84.54 78.28

BERT

Flat 82.64 55.61 90.86 66.35 75.73 69.22
RR 82.13 59.41 90.70 66.59 75.77 69.43
HMCN 82.68 53.65 91.32 64.13 72.28 64.62
Hi-GCN 83.20 60.32 91.90 67.79 75.94 70.81

Table 2: Experimental results for different combinations of encoders and hierarchical document categorisation
methods. The best result for each text encoder on each dataset is indicated in bold. Micro and Macro indicate micro
and macro F1 score, resp..

a batch size of 32 using Adam (Kingma and Ba,
2014), and an initial learning rate of 1e-3 (1e-5 for
BERT) for at most 20 epochs.

For hierarchical categorisation methods, the
penalty coefficient of recursive regularisation is
set to 1e-6, while the output dimension of internal
linear layers in HMCN is set to 384. For the hyper-
parameters of Hi-GCN, we follow the recommen-
dations of the authors in the original paper (Zhou
et al., 2020). Note that in some cases, both HMCN
and Hi-GCN suffer from the vanishing/exploding
gradient problem, to counter which we apply batch
normalisation to the outputs of the linear layers in
HMCN and Hi-GCN where necessary.

3.5 Results

Table 2 presents the experimental results of differ-
ent combinations of text encoders and hierarchical
categorisation methods across the three datasets.
Model performance is heavily influenced by the
choice of text encoder, with BERT outperforming

other encoders by a large margin on RCV1 and
SHINRA in terms of both Micro-F1 and Macro-
F1, but underperforming on WoS, irrespective of
which hierarchical method it is combined with. We
hypothesis that the performance drop for BERT
on WoS is mainly due to domain shift, in that it
has been pre-trained on Wikipedia articles and the
Google Books corpus, which differ substantially
from academic writing.3 Among TextCNN, Text-
RNN, and TextRCNN, TextCNN underperforms
TextRNN and TextRCNN on all three datasets, es-
pecially on RCV1 and SHINRA. The reason is that
TextCNN can only capture local features, but the
fine-grained hierarchical distinctions captured in
the different label sets often require longer-distance
semantic dependencies.

With regards to the hierarchical categorisa-
tion methods, compared with Flat on RCV1 and

3It would be interesting to experiment with SciBERT (Belt-
agy et al., 2019), which has been pre-trained on papers from
the scientific domain, which we leave to future work.
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SHINRA, RR improves Macro-F1 in most cases at
the cost of Micro-F1, indicating that RR can im-
prove the performance of classes with fewer train-
ing samples. In contrast, HMCN improves Micro-
F1 at the cost of Macro-F1, indicating that HMCN
is biased towards classes that are better represented
in the dataset. However, on WoS, RR achieves
better performance in terms of both Micro-F1 and
Macro-F1— with the one exception of Micro-F1

with TextRNN— while HMCN achieves worse per-
formance in terms of both Micro-F1 and Macro-F1.
All these results can be attributed to the fact that
RR and HMCN leverage hierarchical information
differently: RR utilises parent–child relationships,
while HMCN adopts layer-wise hierarchical infor-
mation. As a result of error propagation due to
the greedy top-down approach, HMCN performs
relatively worse the deeper the label hierarchy. For
example, Flat with TextCNN achieves a Micro-F1

of 88.53 at level-1 (7 classes) and a Micro-F1 of
83.41 at level-2 (134 classes) on WoS, where both
Micro-F1 scores at these two levels are higher than
80.24 achieved by HMCN, indicating that the cate-
gorisation errors of HMCN at level-1 propagate to
level-2 and lead to worse results on WoS.

Looking to Hi-GCN, we find that Hi-GCN with
any text encoder consistently outperforms other
methods on all three datasets in terms of both
Micro-F1 and Macro-F1, by aggregating hierarchi-
cal information in a more flexible way. In addi-
tion to passing information from parent to child
nodes, it also passes information from child to par-
ent nodes, thereby improving categorisation perfor-
mance at level-1 and categorisation at subsequent
levels. Both RCV1 and SHINRA datasets have ex-
tremely imbalanced data distributions while WoS
is relatively more balanced, which is also revealed
by the greater differences between Micro-F1 and
Macro-F1 on RCV1 and SHINRA, than on WoS.

These experiments indicate that the performance
of hierarchical document categorisation not only
depends on the text encoder and particular hier-
archical methods, but also the intrinsic hierarchy
label structure and the label distribution.

4 Conclusions

We examine various combinations of text encoders
and hierarchical categorisation methods in an end-
to-end fashion over three datasets. We find that
the choice of text encoder is a strong determi-
nant of performance than the choice of hierarchical

method, and indeed that local hierarchical methods
don’t consistently outperform baseline flat classifi-
cation methods. With regards to hierarchical meth-
ods, RR improves Macro-F1 at the cost of Micro-F1

on RCV1 and SHINRA, while HMCN improves
Micro-F1 at the cost of Macro-F1 on RCV1 and
SHINRA. An opposite trend is observed on WoS,
namely an improvement for RR and deterioration
for HMCN. These different behaviours are deter-
mined by how the hierarchical label information
is modelled during training. The global model Hi-
GCN achieves superior performance in terms of
both Micro-F1 and Macro-F1 on all three datasets,
indicating the necessity of capturing the hierarchy
label structure holistically.
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Abstract

In 2019, the Australasian Language Technol-
ogy Association (ALTA) organised a shared
task to detect the target of sarcastic com-
ments posted on social media. However,
there were no winners as it proved to be a
difficult task. In this work, we revisit the
task posted by ALTA using transformers—
specifically BERT—given the current success
of the transformer-based model in various
NLP tasks. We conducted our experiments
on two BERT models (TD-BERT and BERT-
AEN). We evaluated our model on the data set
provided by ALTA (‘Reddit’) and two addi-
tional data sets: ‘book snippets’ and ‘Tweets’.
Our results show that our proposed method
achieves a 15.2% improvement from the cur-
rent state-of-the-art system on the Reddit data
set and a 4% improvement on Tweets.

1 Introduction

Sarcasm is a remark made by a certain person to
ridicule or hurt another person’s feelings (Cheang
and Pell, 2008). A unique property of sarcasm
lies in the way words are used. The result di-
gresses from the conventional word order and al-
ters the meaning of the whole sentence (Attardo
et al., 2003). This very aspect also makes it very
challenging to detect in a text. There has been a
large number of studies that looked at automating
sarcasm detection (Eke et al., 2020; Joshi et al.,
2017) however there is less work done in identify-
ing and extracting the target of sarcasm from the
text.

The problem of sarcasm target detection was
originally coined by Joshi et al. (2016a). The tar-
get of sarcasm is defined as an entity or a sit-
uation that is being ridiculed in a sarcastic text.
The task of sarcasm target identification is to ex-
tract the subset of words that indicate the target
of ridicule for a given sarcastic sentence. Iden-

tifying the target of ridicule can improve the de-
tection of cyber-bullying and hate speech targeted
towards minority communities such as people of
colour, the LGBTQ+ community and others (Oliva
et al., 2021; Hylton, 2018). However, this task is
particularly challenging because of the following
factors:

• Multiple targets—A sarcastic sentence may
contain multiple targets. For instance in the
following sentence, “James is as good at
cooking as Guy Feiri is at avoiding contro-
versy”, the targets are both “James” and “Guy
Feiri”.

• Lack of targets—The target of sarcasm may
not be present in the given sentence. For ex-
ample in the sentence, “I guess the kumara
loves kayaking”, the speaker makes a sarcas-
tic remark but the target of ridicule is unclear.
When the sarcasm target does is not present
or it is unclear, it is marked as OUTSIDE.

There have been various attempts to improve
the performance of sarcasm target detection (Pa-
tro et al., 2019; Molla and Joshi, 2019; Bölücü
and Can, 2020; Parameswaran et al., 2021) such as
through the use of deep-learning models and rule-
based methods. Given the successes of transform-
ers, particularly BERT (Devlin et al., 2019), in
NLP tasks such as Aspect-Based Sentiment Anal-
ysis (ABSA) (Sun et al., 2019a), and summarisa-
tion (Miller, 2019), we hypothesise that BERT-like
models may also be good at this task.

Our experiments show that BERT models out-
perform the current state-of-the-art system on our
Reddit data by 23.4% and give a 3% increase on
our Tweets data.
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2 Related Work

Sarcasm detection (i.e., distinguishing sarcastic
texts from non-sarcastic texts) is widely studied
in computational linguistics. Eke et al. (2020);
Joshi et al. (2017) have presented a comprehen-
sive overview in this field. To summarise, there
are several approaches: semi-supervised learning
(Bamman and Smith, 2015; Bharti et al., 2015;
Ling and Klinger, 2016; Ghosh and Muresan,
2018), deep learning (Ghosh and Veale, 2016;
Agrawal and An, 2018; Hazarika et al., 2018; Mar-
tini et al., 2018; Liu et al., 2019), and lately, with
the advancement of transformers, researchers have
used transformers to distinguish sarcastic texts
from non-sarcastic texts (Baruah et al., 2020; Av-
varu et al., 2020; Potamias et al., 2020).

Little work has been done to detect the tar-
get of sarcasm—in spite of the Australasian Lan-
guage Technology Association (ALTA) organising
a shared task challenge to encourage researchers
to tackle this problem (Molla and Joshi, 2019).
The approaches taken in prior work include a
rule-based system that looks at Part-of-Speech
(PoS) (Joshi et al., 2016b), deep learning (Patro
et al., 2019), and an ensemble of machine learn-
ing and deep learning classifiers (Parameswaran
et al., 2021). To the best of our knowledge, there
is no research exploring the use of BERT mod-
els for sarcasm target detection, but we note that
Parameswaran et al. (2021) used embeddings from
BERT, but not the transformer.

BERT has shown success in Aspect-Extraction
(AE) within ABSA tasks (Xu et al., 2019; Hoang
et al., 2019). Our task is similar to Aspect-
Extraction, but in our task, the targets may be ab-
sent from the given text, which makes it challeng-
ing. We consider two models from the ABSA liter-
ature for our experiments: TD-BERT (Gao et al.,
2019) and BERT-AEN (Song et al., 2019). Ini-
tially our choice was guided by the fact that BERT-
AEN works well with a smaller data set (Gao
et al., 2019) and we chose TD-BERT as our second
option as we have noticed similiar performance
to BERT-AEN with a much simpler architecture
by just extending it to include the aspect. Our
choice to use these models is further motivated by
the availability of a public repository1 with stan-
dard implementations using PyTorch2 (and there-
fore ease of reproducibility of our experiments).

1https://github.com/songyouwei/ABSA-PyTorch/
2https://pytorch.org/

Tweets Books Reddit
Sentences 224 506 950

Avg. sentence length 13.06 28.47 25.30
Avg. target length 2.08 1.6 2.8

% OUTSIDE 10% 5% 35%

Table 1: Statistics of data sets

HE IS A GOOD COOK

BERT
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Attention Layer
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Attention Encoder Layer

Max Pooling
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Target Classification

HE IS A GOOD COOK

[CLS] is cook [SEP]He a good [CLS] He is a good cook [SEP]

Figure 1: The architecture of BERT-AEN (Song et al.,
2019) (left) and TD-BERT (Gao et al., 2019) (right)

We also note that Mukherjee et al. (2021) used the
ABSA-PyTorch repository as the basis for repro-
ducing the results of ABSA approaches.

3 Data Set

We consider the data sets released by Joshi et al.
(2016b) and Molla and Joshi (2019). The sets
consist of three different kinds of data: Tweets
(Tweets), book snippets (Books) and also Reddit
posts (Reddit). Table 1 shows the details of the
collections.

4 Methodology

When predicting the target of sarcasm, like
others (Patro et al. (2019) and Parameswaran
et al. (2021)), we formulated the problem as
a sequence labelling problem. We first rep-
resent a sarcastic sentence (S) as a sequence
of words {w1, w2, . . . , wN}. We then append
each word with a label indicating if it is a po-
tential target. Consider the following exam-
ple, “He is a good cook” with ‘He’ as the
potential target. The sentence is represented
as {‘He’, ‘is’, ‘a’, ‘good’, ‘cook’} and its label
sequence is {‘He’T , ‘is’ø, ‘a’ø, ‘good’ø, ‘cook’ø},
where T is a potential target and ø is not. We feed
both of these sequences as training input for our
two BERT models (TD-BERT and BERT-AEN).
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Model Tweets Books Reddit
Baseline 1 (Patro et al., 2019) 0.831 ± 0.156 0.865 ± 0.188 0.623 ± 0.261

Baseline 2 (Parameswaran et al., 2021) 0.860 ± 0.165 0.879 ± 0.194 0.715 ± 0.260
TD-BERT 0.849 ± 0.123 0.881 ± 0.195 0.663 ± 0.245

BERT-AEN 0.848 ± 0.102 0.864 ± 0.172 0.689 ± 0.274
TD-BERT (PT) 0.891 ± 0.153 NA † 0.824 ± 0.303

BERT-AEN (PT) 0.880 ± 0.183 NA † 0.785 ± 0.299

Table 2: Results of our experiments. The figures in each case indicate the mean DICE score and standard deviation.
PT denotes that the model is further trained to understand the nuances of the data set. † denotes that the scores for
non-PT and PT models are the same as we did not further train BERT on Books.

Since we are classifying whether each word in
a sentence is a potential target of sarcasm, the first
word of the sequence is appended with a unique
[CLS] token which is used by BERT for classi-
fication tasks. As shown in Figure 1, in order to
train the model, we transform the given sentence
(S) into [CLS] + S + [SEP] and [CLS] +
wk + [SEP] along with the label, wk, where k is
{1 . . . N}. As there can be multiple potential tar-
get terms, we introduce a max-pooling operation
to the two BERT models. This takes into consid-
eration which candidate targets are the best before
it gets fed into the fully connected layer. Finally,
we use a softmax layer in order to classify whether
the current word is a potential target of sarcasm or
not. We use BERTBase (Devlin et al., 2019) as our
pre-trained model.

We briefly explain the architecture of the TD-
BERT and BERT-AEN models below:-

• BERT-AEN (Song et al., 2019)—This model
uses an attention encoder network to model
the semantic interaction between the whole
sentence and the potential target. The Tar-
get Specific Attention Layer is introduced so
that it can compute the hidden states of the in-
put embedding. The attentional encoder layer
has two submodules: multi-head attention
(MHA) and point-wise convolution transfor-
mation (PCT). The MHA performs multi-
ple attention functionality that provides in-
trospective context words modelling and per-
ceptive target word modelling. According to
Song et al. (2019), this is a lightweight solu-
tion as opposed to using LSTM. Then, PCT
transforms the contextual information from
MHA by incorporating context-perceptive
target words. Additionally, BERT-AEN uses
label smoothing regularisation (LSR) in the
loss function. LSR reduces overfitting by re-

placing the 0 and 1 targets for the classifier
with smoothed values (such as 0.1 and 0.9,
respectively). This works well in our situa-
tion, where we have a limited amount of data.

• TD-BERT (Gao et al., 2019)—TD-BERT’s
architecture closely resembles that of BERT.
The key difference is that TD-BERT incor-
porates the potential target information in its
classification input, as described above.

Given the small number of sentences in our data
sets, and the domain specific language used in
Reddit and Tweets, we initially trained BERTBase

to additionally understand the nuances of language
use in those domains (Sun et al., 2019b). To do this
we sampled 150,000 posts from Khodak’s Red-
dit data set (Khodak et al., 2017) for Reddit and
100,000 tweets from The Edinburgh Twitter Cor-
pus (Petrović et al., 2010) for Tweets. We further
pre-trained BERTBase as a Mask Language Mod-
elling task. We followed the recommendation of
(Devlin et al., 2019), by masking 15% of all input
tokens randomly. Additionally, we took the nec-
essary steps to ensure that the sentences found in
Reddit and Tweets were removed from Khodak’s
Reddit and the Edinburgh Twitter Corpus before
training. We did no additional training for Books
because BERTBase has already been trained on
such content (Devlin et al., 2019).

We reserved 10% of our training set for the pur-
pose of fine-tuning parameters. The best parame-
ters we found were a batch size of 32, a maximum
sequence length of 128, the maximum predictions
per sequence being 20, and a learning rate of 10−5.

Once we had trained the models for Reddit and
Tweets, we then fine-tuned both of our BERT mod-
els to each of our three data sets using the training
data provided in those data sets. We set the num-
ber of epochs to 3 and the learning rate to be 10−5
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following the recommendation from Devlin et al.
(2019).

5 Experimental Setup

We ran our experiments on an Intel Xeon E5-2690
v3 @ 2.00 GHz CPU with an NVIDIA Tesla T4
(CUDA Version 11.2, Driver Version 460.73) run-
ning on Debian 10 (Buster). We forked commit
9acab7e of ABSA-PyTorch and modified it to
suit our task. Our source code can be found on our
GitHub page.3

We consider the current state-of-the-art models
from Patro et al. (2019) and Parameswaran et al.
(2021) as baselines for this task, that we called
Baseline 1 and Baseline 2, respectively. We im-
plemented the approaches of each author and com-
pared our results to theirs. A one-way ANOVA
showed no statistically significant difference at the
0.05 level, providing confidence in our implemen-
tations of their approaches.

We use DICE score to measure the accuracy as
it has been used in past works (Joshi et al., 2016a;
Molla and Joshi, 2019). All the results reported
used five-fold cross-validation.

6 Results

We report our results in Table 2. It is not surpris-
ing that training BERT improves results for Reddit
and Tweets as the model has learned the nuances
of language used on those platforms (Sun et al.,
2019b). From our experimental results, training
TD-BERT gives a 15.2% improvement on state-
of-the-art for Reddit, but only a modest improve-
ment of 4% for Tweets and 0.22% for Books.

Surprising to us, TD-BERT performs best in all
our tasks. We believe that the simple method of
just incorporating a target’s position helped the
model to better understand the context of the sen-
tences. Although the multiple attention mecha-
nisms in BERT-AEN could be expected to outper-
form TD-BERT, it is unclear why this is not the
case in our experimental results. One possible ex-
planation is that the data set is small and the model
has learned more noise. We leave for future work
the exploration using larger data sets.

6.1 Evaluation on Kaggle
In addition to evaluating our models on the three
data sets, we ran our best performing model (TD-
BERT (PT)) on the data from the ALTA 2019

3https://github.com/prasys/ABSA-PyTorch/

System Public Private
Baseline 1 0.466 0.514

(Patro et al., 2019)
Baseline 2 0.493 0.548

(Parameswaran et al., 2021)
Always OUTSIDE 0.367† 0.349†

Powers 0.386† 0.333†

Orangutan 0.371† 0.292†

Pronouns 0.209† 0.225†

Ours (TD-BERT (PT)) 0.501 0.562

Table 3: Evaluation on Kaggle Public and Private por-
tions of the data set. † denotes a method that was in-
cluded within the 2019 ALTA Shared Task Challenge

Shared Task, as seen on Kaggle. This allowed us
to examine the generalisability of our solution in
the wild. Table 3 presents our results and the re-
sults from previously published runs. A one-way
ANOVA-test of our model with Baseline 1 and
Baseline 2 did not find any statistically significant
difference at the p < 0.05 level. However, our ap-
proach beats all the participants’ runs (Powers and
Orangutan) and the two baselines provided by the
Shared Task (Always OUTSIDE, which always out-
puts ‘no target’, and Pronouns, which extracts and
outputs the pronouns) at the p < 0.05 level.

We further investigated the Kaggle score as our
model’s DICE score is much lower than the DICE
score that we obtained in the other three datasets.
First, we validated the scores in Table 2 by upload-
ing our test portion to a private Kaggle contest and
evaluating our run. The Kaggle score matched that
in the table, giving confidence that our implemen-
tation of DICE is correct.

Next, we augmented our sentences with the sub-
reddit information from Khodak et al. (2017) and
compared that to the annotated public portion of
Reddit. We observe that 23% of the private por-
tion’s subreddits are not in the public portion. We
hypothesise that the model has learned the nuances
of the subreddits it has seen, but cannot generalise
this across all subreddits. However, we do not
have the ground truth, so cannot form any solid
conclusions.

6.2 Computational Costs
Figure 2 illustrates the comparisons of our chosen
models’ run-time and evaluation time on all three
of the data sets. We can see that the much sim-
pler TD-BERT performs faster than BERT-AEN in
all the cases. The training and evaluation time for
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Figure 2: TD-BERT and BERT-AEN training time (left) and run time (right) comparison

non PT models are very similar to the PT ones.
However, it is worth noting that training further
on the Reddit data set took 336 minutes, and for
Tweets took 240 minutes. We believe that the per-
formance gain for both data sets easily justifies
this modest training time. Hao et al. (2019) sug-
gested that running more epochs can improve per-
formance but we leave this for future work.

6.3 Failure Analysis

Compared to the untrained BERTBase, we believe
that our trained BERTBase can better understand
the language used in various subreddits, where
there are often novel words being coined. Con-
sider the following example from the training set,
“Yeah, an ice cream is so much less creative than
a pokeball with eyes” (target in bold). The further
trained model predicted a partially correct answer
of “pokeball” but the out of the box model miss-
classified this sentence, returning OUTSIDE.

However, there are instances where we did not
obtain the correct target, regardless of the BERT
model or any additional training and fine-tuning.
For example, “Yeah 0i have an i5 520m and In-
tel HD and you know, it really bugs the hell out
of me when my fps goes below 20 like come on”.
The annotators mark it as OUTSIDE but both of our
models predicted “I”, we believe the answer to be
“Intel HD” as well as “i5 520m”.

In Reddit, the standard deviation of the DICE
scores is higher than in the other data sets. This
lends further evidence to our hypothesis that do-
main (subreddit) specific language is learned in
training, and is not easily generalised. Patro et al.
(2019) has demonstrated that a PoS tagger can
help improve the quality of a sarcasm target de-
tector, and we believe it might help here too. We
leave the exploration of this for future work.

7 Conclusion

We presented our approach to sarcasm target de-
tection. We used two different publicly available
BERT models: TD-BERT and BERT-AEN, and
fine-tuned them to the task using extra examples
of data from the domains we explore. Finally, we
evaluated our models on three publicly available
data sets: Tweets, Books, and Reddit. Our empiri-
cal results show that this approach outperforms the
current state-of-the-art on all three data sets.

Despite setting a strong baseline, we believe
that there remains plenty of room for further work
in this area. Firstly, we conducted our experi-
ments on a small data set, therefore our proposed
methodology needs to be tested when applied to
a larger data set. Secondly, the use of user pro-
files, user history, context, and so on, might im-
prove performance for Reddit and Tweets as de-
tecting sarcasm is a difficult task and it requires
more than content alone. Some users are more
prone to sarcastic quips than others, and that could
be mined from a person’s past posts (Marwick and
Boyd, 2011).
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Abstract

Transformer encoder models exhibit strong
performance in single-domain applications.
However, in a cross-domain situation, using
a sub-word vocabulary model results in sub-
word overlap. This is an issue when there is
an overlap between sub-words that share no
semantic similarity between domains. We hy-
pothesize that alleviating this overlap allows
for a more effective modeling of multi-domain
tasks; we consider the biomedical and general
domains in this paper. We present a study on
reducing sub-word overlap by scaling the vo-
cabulary size in a Transformer encoder model
while pretraining with multiple domains. We
observe a significant increase in downstream
performance in the general-biomedical cross-
domain from a reduction in sub-word overlap.

1 Introduction

Contemporary language models are pretrained on
massive, linguistically diverse corpora (Lan et al.,
2020; Devlin et al., 2019a). It is not uncommon for
these models to excel at benchmark downstream
tasks (Wang et al., 2019a), given the use of con-
textual representations (Devlin et al., 2019b) that
are trained on a variety of source domains—a term
used to describe a distribution of language on a
given topic or genre (for example BIOMEDICAL,
SCIENTIFIC)—or GENERAL domain. However, the
benefit of GENERAL domain pretraining for spe-
cialized application is questionable, as applying
these language models (Gu et al., 2020) to special-
ized tasks is worse than using specialized coun-
terparts (Beltagy et al., 2019). This degradation
still occurs after sequential pretraining on special-
ized domains (Shin et al., 2020) when fine-tuned
(updates to pretraining) to downstream tasks.

We hypothesize some of this degradation lies in
the use of a sub-word vocabulary (Si et al., 2019).
Sub-word vocabularies (Sennrich et al., 2016; Wu
et al., 2016a,b) allow for efficient modeling of a

source language distribution with a limited vocab-
ulary size. However, problematically sub-words
can be shared between different words—for exam-
ple hypotension and hypocritical—with different
meanings. This potentially conflates the vector rep-
resentation of a sub-word (or wordpiece) causing
sub-word overlap. When this overlap occurs with
sub-words appearing in multiple domain contexts
we call this cross-domain sub-word overlap.

As a pilot empirical study, we investigate reduc-
ing cross-domain sub-word overlap, by increasing
vocabulary size, in language models pretrained in
the GENERAL and BIOMEDICAL cross-domain. To
evaluate the effect of sub-word overlap, general
and biomedical domain benchmarks are used in
this study as the task distribution includes differ-
ent linguistic phenomena such as grammar, sen-
timent, textual similarity, natural language infer-
ence (Wang et al., 2019a). Interestingly, we find
that disjoint sub-word vocabulary sets are not ideal.
Some sub-word overlap is necessary and unavoid-
able, and a different level of overlap is ideal for
each target domain. We also find a positive trend
occurs when reducing cross-domain sub-word over-
lap, suggesting that there is a trade-off depending
on the target downstream task and domain.

To better understand the results, we look at the
impact of the pretraining data domain on down-
stream benchmark performance. Surprisingly, we
found that inclusion of the general domain with a
specialized domain improves downstream perfor-
mance for that specialized domain’s tasks, but not
the other way around. This suggests that special-
ized domains should be trained in tandem with a
general one.

Our contribution is a pilot study that investigates
a pretraining strategy to reduce cross-domain sub-
word overlap between GENERAL and BIOMEDICAL

domains. We train cross-domain language models
with varied vocabulary sizes and evaluate them on
downstream classification tasks. We show that a
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significant improvement can be achieved on two
benchmark datasets ((Wang et al., 2019a), (Peng
et al., 2019)) when reducing overlap. Further ex-
periments point to the importance of selecting ap-
propriate pretraining data for specialized domains.

2 Related Work

We discuss strategies from the literature to adapt the
GENERAL domain language model, in particular a
Transformer (Vaswani et al., 2017) encoder (Devlin
et al., 2019b), to a specialized domain.

Domain-specific pretraining Many studies
have adapted BERT, a popular Transformer en-
coder, to a specialized domain. However, as BERT
was pretrained with a general domain sub-word
vocabulary and trained on general domain data
(BookCorpus and Wikipedia), domain adaptation
is needed. For example, in the BIOMEDICAL

domain, BioBERT (Lee et al., 2019) benefited
from additional pretraining of the pretrained BERT
model on academic biomedical corpora (PubMed
Open Access and MEDLINE), showing a marked
improvement on downstream biomedical tasks.
DAPT (Gururangan et al., 2020) showed similar
improvements.

However, BioBERT’s approach was less ef-
fective in clinical applications; thus, Clinical-
BERT (Alsentzer et al., 2019) was trained on
domain-specific clinical corpora to improve upon
downstream clinical tasks. Similarly, Blue-
BERT (Peng et al., 2019) was pretrained on a
combination of domain-specific data, including
PubMed abstracts and clinical notes. However,
these approaches were only specialized for narrow
task distributions rather than the entire BIOMEDI-
CAL domain (Nguyen et al., 2019) and were trained
sequentially (general to biomedical) rather than
combined initially, which may suffer from effects
such as catastrophic forgetting (McCloskey and
Cohen, 1989).

Vocabulary Insertion Other studies considered
extending a Transformer-based model’s vocabulary
without repeating the expensive pretraining step. In
particular, one study replaced unused vocabulary el-
ements with medical suffixes and prefixes (Nguyen
et al., 2019). Additional pretraining steps were
used so that the model learned the new vocabu-
lary. They found that vocabulary insertion did not
help as much as an increase in pretraining data. A
similar observation is found by Shin et al. (2020)

and Beltagy et al. (2019). However, another study
using a domain-specific tokenizer for vocabulary
insertion (Tai, 2019) found improvements in the
German legal domain. However, improvements
from vocabulary insertion are minimal, as there is
still an interaction between the original vocabulary
embeddings and the embeddings added during the
fine-tuning step, resulting in sub-word overlap.

Wang et al. (2019b) proposes an enrichment
of the BERT vocabulary by using embeddings
from other models and learns a projection to the
BERT embedding space in a multilingual setting.
exBERT (Tai et al., 2020) extends the embed-
ding dimension with domain-specific vocabulary.
The model’s original weights and embeddings
are frozen during extended vocabulary training.
Within the same class of approaces, (Poerner et al.,
2020) propose a method where general domain em-
beddings are aligned with target-domain-specific
word2vec embeddings. However, vocabulary inser-
tion approaches circumvent the pretraining stage
with domain-specific data which may potentially
be more important than a vocabulary change (Shin
et al., 2020).

Domain-specific vocabulary pretraining An
extension to these methods is to pretrain on a target
domain corpus with a custom vocabulary. SciB-
ERT (Beltagy et al., 2019) showed that pretraining
from scratch with a domain-specific vocabulary is
better than a general-purpose vocabulary despite
having fewer combined pretraining examples. Sim-
ilarly, BioMegatron (Shin et al., 2020) showed that
a larger custom vocabulary is useful for biomedical
named entity recognition tasks and that a domain-
specific vocabulary is more valuable than a larger
model. They also show that a larger vocabulary size
caused a reduction in over-segmentation, a prob-
lem that occurs when using a general vocabulary
on specialized tasks (Chalkidis et al., 2020) that
increases sub-word overlap.

Our work is a pilot study that extends upon
domain-specific vocabulary pretraining to inves-
tigate cross-domain sub-word modeling. We pre-
train models with varying vocabulary sizes to re-
duce sub-word overlap. In particular, we focus on
cross-domain pretraining, which was previously
unexplored in vocabulary experiments.

3 Datasets and Tasks

We use the combined English snapshot of
Wikipedia (a proxy for the general domain) and
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PubMed Open Access Full-Text corpora (biomedi-
cal domain) taken on the 1st of April 2020 for pre-
training the language models and tokenizers. The
PubMed corpus, consisting of 8.3 billion tokens,
is preprocessed to remove references, while the
Wikipedia corpus, consisting of 2.0 billion tokens,
is extracted and cleaned with wikiextractor (At-
tardi, 2015). We use this pretraining data combina-
tion as a cross-domain proxy of the GENERAL and
BIOMEDICAL domain. We use the training and val-
idation sets of the GLUE benchmark (Wang et al.,
2019a) to fine-tune our models for general domain
benchmarking. Likewise, we use the publicly avail-
able subset of the BLUE tasks collection for the
biomedical domain (Peng et al., 2019).

4 Experiments

We perform pretraining with a cross-domain cor-
pus with the ALBERT model, which results in a
high degree of cross-domain sub-word overlap. In
addition, we experiment with models that have dif-
ferent vocabulary sizes (5000 to 100,000), each
with a varying degree of sub-word overlap during
pretraining. In Transformer models, the embedding
dimension is coupled with the model’s hidden di-
mension, causing the vocabulary size to control the
model size—a larger vocabulary size exponentially
increases the model’s size. To remedy this, we
use the ALBERT model (Lan et al., 2020), which
projects the embedding dimension to a latent vocab-
ulary dimension before projecting it to the model’s
hidden dimension. This projection allows scaling
of the vocabulary size without significantly impact-
ing the model’s size.

Task performance and vocabulary size After
pretraining, for each vocabulary size, we then eval-
uate our language models on downstream BLUE
and GLUE benchmark datasets to determine how
downstream performance is affected by the amount
of sub-word overlap.

Determining Sub-word Overlap To determine
the amount of sub-word overlap in relation to vo-
cabulary size, we tokenize each general domain
and biomedical task in GLUE and BLUE for each
vocabulary size and compute the Jaccard index (Jac-
card, 1912). The GLUE and BLUE tasks, are used
as a cross-domain proxy between the GENERAL
and BIOMEDICAL domains.

Experimental Setup For each model (vocabu-
lary size |V |), we train a separate tokenizer using

Byte-Pair Encoding (Sennrich et al., 2016). We
use masked language modeling to train the largest
model, ALBERT|V=100,000|, on the combined cor-
pora of Wikipedia and PubMed for two weeks us-
ing four V100 GPUs with an effective batch size
of 256. We use the LAMB (You et al., 2020) opti-
mizer and a maximum model sequence length of
512. All other hyperparameters are left as default,
as described by Lan et al. (2020). For each model,
we select the checkpoint such that validation per-
formance (perplexity) is equal for all models. We
then evaluate each model on both general domain
and biomedical benchmark tasks. Specifically, we
fine-tune each model for a maximum of 15 epochs
for all the biomedical tasks, taking the best model
on the validation set for inference over the test set.
For the general domain tasks, to reduce overfit-
ting (false convergence), we train each task for five
epochs and report the validation performance as
the test set labels are not publicly available.

However, scaling vocabulary size itself can lead
to performance increases (Shin et al., 2020). Hence,
we use the checkpoint where validation perfor-
mance for masked language modeling is equal
across all models; meaning that all models have
similar capacity for language modeling with the
only difference being vocabulary size during down-
stream updates via fine-tuning. The increase in
parameter count due to vocabulary embeddings is
negligible as the embeddings are all projected into
the same sized latent dimension before being used
by the model.

The classification layer used is created for each
individual task and is not shared by any model. We
use the default classification layer, with the correct
label output layer as provided by the huggingface
library (Wolf et al., 2019).

|V | CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI

5000 13.7 64.9 79.6 64.3 75.7 56.7 78.0 17.7 53.5
10000 12.8 70.1 79.3 67.4 79.9 51.3 80.5 19.9 33.8
20000 9.30 70.8 78.6 78.8 81.5 51.6 83.4 61.0 46.5
30000 20.7 70.6 78.4 78.8 81.3 54.9 83.1 63.7 56.3
40000 14.8 71.2 80.9 78.7 80.0 54.5 82.3 21.3 43.7
50000 15.3 71.1 79.2 79.5 80.9 54.5 83.4 28.9 46.5
60000 16.9 71.4 77.3 79.6 80.3 53.1 82.1 25.6 42.3
70000 17.4 71.0 79.3 78.8 79.7 55.6 85.7 26.9 36.6
80000 17.3 71.0 80.3 79.0 81.3 53.8 84.8 31.0 56.3
90000 21.2 71.1 80.1 79.6 81.2 50.2 84.3 25.8 56.3

100000 21.9 71.3 79.0 79.0 80.4 52.4 83.7 34.5 46.5

Table 1: Evaluation of the general domain tasks against
varied |V | of the ALBERT model.
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|V | Jaccard Index Num. Overlaps Num. Overlaps/|V | |V | in use

5000 94.6 4710 94.2% 99.5%
10000 87.8 8730 87.3% 99.5%
20000 73.8 14600 73.0% 99.0%
30000 62.8 18480 61.6% 98.2%
40000 54.6 21200 53.0% 97.1%
50000 48.2 23100 46.2% 95.8%
60000 43.0 24360 40.6% 94.4%
70000 38.9 25200 36.0% 92.7%
80000 35.6 25840 32.3% 90.8%
90000 32.8 26280 29.2% 89.1%
100000 30.4 26600 26.6% 87.3%

Table 2: Jaccard Index and overlap proportion for vary-
ing vocabulary sizes.

5 Results and Discussion

We trained masked language models of varying vo-
cabulary sizes, each with its own degree of sub-
word overlap and evaluate on downstream gen-
eral and biomedical language understanding bench-
marks. We found that cross-domain sub-word over-
lap reduction benefited the cross-domain between
the general (Table 1) and biomedical domain (Fig-
ure 1) as sub-word overlap decreased (Table 2).

In terms of sub-word overlap, we find that the
Jaccard index decreases sharply with vocabulary
size (Table 2), indicating that biomedical and gen-
eral domain tasks share common elements. This
overlap decreases rapidly, especially at larger vo-
cabularies (26.6% overlap at |V | = 100, 000). A
similar overlap percentage is reported by Beltagy
et al. (2019) when measuring overlap between sci-
entific and general domain vocabulary.

We also report the sub-word overlap proportional
to vocabulary size (Table 2) and observe that it also
falls sharply in a similar pattern. Although sub-
word overlap proportion decreases, at least 87.3%
of the vocabulary is still used, meaning vocabulary
elements are not underused. Generally, reducing
the overlap from approximately 60% Jaccard Index
(|V | < 30000) to 40% (|V | ≥ 70000) increases
effectiveness in the biomedical domain while pro-
ducing small improvements in the general domain

Benchmark Pretraining Corpora Effectiveness

BLUE
(F1)

Wiki 0.6973
PubMed 0.6706
PubMed+Wiki 0.7186†

GLUE
(Acc)

Wiki 0.7090
PubMed 0.7060
PubMed+Wiki 0.6906

Table 3: Pretraining data selection and downstream
benchmark performance. BLUE is measured in terms
of F1-score, while GLUE is measured in Accuracy.
The BLUE benchmarks have a confidence interval
higher than 0.95 using a sign test.

Domain Task S L L-S

General Domain

CoLA 14.3 14.7 +0.40
MNLI 69.5 71.1† +1.60
MRPC 79.4 79.6 +0.20
QNLI 73.6 79.3 +5.70
QQP 79.7 80.6 +0.90
RTE 53.8 53.5 -0.50
SST-2 81.5 84.0† +2.50
STS-B 36.7 28.8 -7.90
WNLI 46.8 47.5 +0.70

Biomedical

biosses 13.6 19.0 +5.40
chemprot 59.4 65.2 +5.80
DDI 66.9 71.2† +4.30
HoC 81.4 82.1 +0.70
MedNLI 67.6 70.2† +2.60

Table 4: Performance of vocabulary sizes larger (L)
than 50,000, and vocabulary sizes smaller (S) than
50,000 on language understanding general (GLUE) and
biomedical (BLUE) tasks. An independent t-test is
used to calculate statistical significance (P < 0.05) de-
noted by †. Metrics are given in Appendix 8.2.
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Figure 1: Evaluation of the biomedical tasks against
varied |V |. A bold blue circle indicates the peak of the
curve.

(Table 1). This indicates that reducing sub-word
overlap does not reduce vocabulary usage and that
downstream fine-tuning with a larger vocabulary
size alleviates overlap and improves performance.

However, we find that few tasks perform best
with a maximal separation of the biomedical and
general domain vocabulary, with the only tasks
performing well are CoLA (grammar detection),
MedNLI (inference classification) and DDI (rela-
tion extraction). This suggests that a degree of over-
lap in a cross-domain is beneficial and that these
domains share similarities. This shared similarity
is also observed by Toews and Holland (2019).

BLUE tasks seem to benefit from a larger sep-
aration of vocabularies, as suggested by an im-
proved F1-score with increased vocabulary size
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(|V |) in Figure 1. However, this benefit is less
significant for GLUE tasks, as validation model
selection (used in BLUE) could not be applied.

We find that GLUE results are worse when using
combined (PubMed+Wiki) rather than individual
pretraining corpora (see Table 3), while interest-
ingly, the opposite appears to be true for BLUE.
However, both benchmarks together show that the
pretraining data and a larger vocabulary size helps
in a cross-domain setting. Though it does not signif-
icantly hurt performance in the general domain, it
significantly improves performance in the biomedi-
cal domain. Interestingly, pretraining with PubMed
alone performed worse than pretraining with the
Wikipedia corpus. A detailed table of results can
be found in Appendix 5.

We observe that inference tasks fared better with
a larger vocabulary (Table 4), indicating that infer-
ence tasks are more affected by sub-word overlap.
For textual entailment (RTE) and paraphrase detec-
tion (QQP), larger |V | had no positive effect. For
SST-B (Textual Similarity) the model overfits as
data size is small compared to the other tasks. Fur-
thermore, while the default |V | in transformers is
30,000, only a few tasks perform well at this size,
suggesting that |V | is an important consideration
during pretraining depending on downstream task.

6 Limitations

This study only considers the biomedical and gen-
eral domains; we hypothesize these principles can
be applied to other domains, such as multilingual
machine translation. One particular observation
relevant to our setup is that the general domain
corpus is smaller than that of the target domain,
which should also be considered when extrapolat-
ing our findings. Another limitation is that training
of the language models was not performed to com-
pletion. However, language modeling effectiveness
was fixed for a fair comparison. These limitations
will be explored in future work.

We are also aware that the fixed perplexity does
not fully disentangle the impacts of vocabulary
overlap and vocabulary size on the downstream
effectiveness. We plan to extend our study with fur-
ther experiments to ensure the robustness of results
presented here.

7 Conclusions

When applying general domain Transformer lan-
guage models to specialized ones, the use of sub-

word modeling results causes sub-word overlap
leading to decreased performance. We showed
that increasing the vocabulary size of the model
alleviates this performance penalty and improves
downstream task performance on GENERAL and
BIOMEDICAL benchmarks. Furthermore, we show
that specialized domains improve significantly
from a combination of specialized and general do-
main pretraining data. Our work is a pilot study
into improving downstream performance on spe-
cialized domains with potential application in cross-
domain tasks. In the future, we would extend this
study to other applications such as machine trans-
lation and cross-lingual language modeling.

Acknowledgements

Vincent is supported by the Australian Research
Training Program and the CSIRO Research Office
Postgraduate Scholarship. This work is funded by
the CSIRO Precision Health Future Science Plat-
form.

References
Emily Alsentzer, John Murphy, William Boag, Wei-

Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clini-
cal BERT embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78, Minneapolis, Minnesota, USA. Asso-
ciation for Computational Linguistics.

Giusepppe Attardi. 2015. Wikiextractor. https://
github.com/attardi/wikiextractor.

Simon Baker, Ilona Silins, Yufan Guo, Imran Ali, Jo-
han Högberg, Ulla Stenius, and Anna Korhonen.
2015. Automatic semantic classification of scien-
tific literature according to the hallmarks of cancer.
Bioinformatics, 32(3):432–440.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3606–
3611, Hong Kong, China. Association for Computa-
tional Linguistics.

Ilias Chalkidis, Manos Fergadiotis, Sotiris Kotitsas,
Prodromos Malakasiotis, Nikolaos Aletras, and Ion
Androutsopoulos. 2020. An empirical study on
large-scale multi-label text classification including
few and zero-shot labels. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7503–7515, Online.

196



Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019a. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019b. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In NAACL-HLT, pages 4171–4186,
Minneapolis, MN.

Alvar EllegaRd. 1960. Estimating vocabulary size.
16:219–244.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas,
Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
Jianfeng Gao, and Hoifung Poon. 2020. Domain-
specific language model pretraining for biomedical
natural language processing. Computing Research
Repository.

Suchin Gururangan, Ana Marasović, Swabha
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value
benchmark collection dataset

BLUE Wikipedia+PubMED Chemprot 60.0
DDI 72.7
HoC 83.1
MedNLI 71.5

PubMED Chemprot 51.7
DDI 66.3
HoC 81.7
MedNLI 68.4

Wikipedia Chemprot 56.6
DDI 69.3
HoC 82.0
MedNLI 70.9

GLUE Wikipedia+PubMED MRPC 66.9
QNLI 81.2
QQP 85.8
RTE 52.7
SST-2 84.0
WNLI 43.7

PubMED MRPC 65.0
QNLI 79.7
QQP 86.4
RTE 51.3
SST-2 85.0
WNLI 56.3

Wikipedia MRPC 70.8
QNLI 79.1
QQP 86.3
RTE 50.5
SST-2 82.5
WNLI 56.3

Table 5: Expanded results from Table 3.

8 Determining vocabulary size

Prior to pretraining, when building the wordpiece
tokenizer. We estimated the upper limit of unique
vocabulary tokens based on the assumptions that:
(1) each corpora is english; (2) each corpora shares
no tokens; and, (3) the corpora’s token frequency
follows a zipf distribution (Zipf, 1936). From, (El-
legaRd, 1960) (Table 5), we calculated the upper
limit for the vocabulary for each corpus given our
second assumption and summed the result which
gives a combined vocabulary size of approximately
90,000. We extend the vocabulary by an extra
10,000 to determine if our vocabulary size was
sufficient.

8.1 Pretraining Data Experiments

We train separate models for each corpora, namely
Wikipedia, PubMed and the combined corpora of
Wikipedia and PubMed. We use the same training
procedure as in our main experiments, but at a fixed
vocabulary size of 40,000.

8.2 Downstream Tasks

We use the standard GLUE benchmark tasks and
the BLUE language understanding tasks. We de-
scribe the BLUE tasks as follows:
Relation Extraction DDI (Herrero-Zazo et al.,
2013), is a medical corpus consisting of texts from
the Drugbank database and MeEDLINE abstracts
annotated by experts for drug-drug interactions.

Chemprot (Krallinger et al., 2017), a classifica-
tion task for five different chemical-protein interac-
tion categories from PubMed abstracts.
Multilabel classification Hallmarks of Cancers
(HoC) (Baker et al., 2015), a corpus of PubMed
abstracts labeled with one or more of ten cancers.
Inference For inference-based tasks, we use Medi-
cal Natural Language Inference (MedNLI) (John-
son et al., 2016a) created from MIMIC-III (Johnson
et al., 2016b) and annotated by radiologists with en-
tailment, neutral and contradiction labels for each
premise-hypothesis pair.

Metrics Generally, for the BLUE tasks, we use
macro averaged F1-score, except for HoC where
we report the micro averaged F1-score similar to
that described in Peng et al. (2019). Evaluation of
the GLUE benchmark is based on GLUE’s official
metrics (Wang et al., 2019a): F1-score for QQP
and MRPC, Pearson and Spearman correlation for
STS-B, Matthew’s Correlation for CoLA, which
measures binary agreement between prediction and
observed from -1 (total disagreement) and +1 (per-
fect prediction), and accuracy for the remaining
tasks.

9 Minimizing Sub-word overlap

We describe the intuition behind the reduction in
sub-word overlap in more detail here and discuss
some results.

9.1 Definitions

Sub-word overlap is a phenomena wherein tokens
in a sub-word model will exhibit a polysemous,
though it is closer to homonymy, effect where sub-
words will be shared by words that have different
meanings. To combat this, we scale the vocabulary
size, such that fewer sub-words are shared by differ-
ent words. Chalkidis et al. (2020) also notes that in
specialized contexts, general domain vocabularies
tend to over-segment specialized terminology, such
as diseases or medications.
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|V | Jaccard Similarity Num. Overlaps % Vocab Used Num. Tokens used in GLUE tasks Num. Tokens used in BLUE tasks

5000 94.6 4708 99.5 4970 4713
10000 87.8 8733 99.5 9893 8786
20000 73.8 14609 99.0 19418 14989
30000 62.8 18490 98.2 28457 19498
40000 54.6 21193 97.1 37057 22980
50000 48.2 23083 95.8 45239 25726
60000 43.0 24359 94.4 53109 27888
70000 38.9 25226 92.7 60545 29549
80000 35.6 25858 90.8 67563 30961
90000 32.8 26287 89.1 74369 32118

100000 30.4 26593 87.3 80842 33095

Table 6: Detailed results from Table 2, including statistics for the number of unique tokens used the BLUE and
GLUE tasks.

9.2 Measuring Sub-word Overlap

We used Jaccard Index (Jaccard, 1912), to mea-
sure the set overlap between the GLUE and BLUE
tasks. We found a decreasing trend in overlap when
increasing vocabulary size, which was correlated
with an increase in downstream task performance.
We found that as vocabulary size increased, more
vocabulary elements were used in terms of abso-
lute quantities for both the GLUE and BLUE tasks.
This could be attributed to fewer words being bro-
ken up into sub-word units as vocabulary size in-
creases (Chalkidis et al., 2020).

9.3 Task Vocabulary Sizes

For each task, we used tokenized based on white-
space to approximate the vocabulary size needed
to represent all words in at task (Table 7).

9.4 Discussions

By expanding the vocabulary dimension, fewer
overlaps will occur which is shown in Table 2 as a
proportion of the overall vocabulary size and Jac-
card Index. Though, in absolute terms the number
of overlaps increase, suggesting that some over-
lap between domains does exist and the overlap
percentage being approached is similar to the one
found in Beltagy et al. (2019). This is further re-
flected in Table 3 where the GLUE tasks perform
similarly when pretrained on either PubMED or
Wikipedia. Suggesting that the pretraining data
on its own has enough data to pretrain a general
domain model.

Although this not hold true for the specialized do-
main, which requires both the general domain and
specialized domain. Our intuition for pretraining
on both Wikipedia and PubMED simultaneously
is to reduce the catastrophic forgetting effect (Mc-
Closkey and Cohen, 1989), which may be present

Task Unique Vocabulary Elements

CoLA 1948
MNLI 13693
MRPC 3858
QNLI 17837
QQP 38260
RTE 4510
sst-2 4293
sts-b 7073
WNLI 592

biosses 362
Chemprot 12385
DDI 3280
HoC 8288
MedNLI 2840

Table 7: Unique vocabulary elements (whole words de-
limited by spaces)

in models such as BioBERT (Lee et al., 2019), and
ClinicalBERT (Alsentzer et al., 2019) given that
the models are trained sequentially with medical
corpora.
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Abstract

The 2021 ALTA shared task is the 12th instance
of a series of shared tasks organised by ALTA
since 2010. Motivated by the advances in ma-
chine learning in the last 10 years, this year’s
task is a re-visit of the 2011 ALTA shared task.
Set within the framework of Evidence Based
Medicine (EBM), the goal is to predict the qual-
ity of the clinical evidence present in a set of
documents. This year’s participant results did
not improve over those of participants from
2011.

1 Introduction

Evidence Based Medicine (EBM) urges the med-
ical practitioner to make use of the best available
evidence for making decisions about the care of
individual patients (Sackett et al., 1996). However,
medical and biomedical research generates such a
volume of publications that it is unrealistic for a
medical doctor or researcher to be able to read all
relevant publications in order to be up to date on the
available medical evidence. For example, PubMed
currently contains more than 33 million citations
for biomedical literature1. A more recent collec-
tion, CORD-19, contains over 500,000 publications
on topics related to COVID-19, SARS-CoV-2, and
related coronaviruses2.

An important step for determining the best clini-
cal evidence is to grade the quality of the available
evidence. To help address this problem, in 2011 the
ALTA shared task launched the task of automatic
evidence grading (Mollá and Sarker, 2011). The
goal of the task was to build a system that predicts
the grade of evidence available in a set of medical
publications. Forward 10 years, in 2021, the task
has been re-visited. The 2021 task uses the same

1https://pubmed.ncbi.nlm.nih.gov/
2https://www.kaggle.com/allen-institute-for-ai/CORD-

19-research-challenge

training and test data sets as in 2011, and the evalu-
ation framework has been re-created as closely as
possible to match the 2011 evaluation framework.

We wanted to know whether the recent advances
in machine learning over the last 10 years lead to an
improvement in the accuracy of the automatic grad-
ing of evidence predictors. This paper describes
the specific set up of the 2021 ALTA shared task,
and shows the results of the participating systems.
Back in 2011, no participating systems improved
on a majority baseline. In 2021, the results of the
participating systems appear to improve over the
majority baseline, but the difference is not statisti-
cally significant. Section 2 gives more details about
the automatic grading of evidence task. Section 3
presents related work since 2011. Section 4 details
the evaluation framework. Section 5 presents the
participating systems and their results, and Sec-
tion 6 concludes this paper.

2 Evidence Grading

Several taxonomies have been defined to grade the
quality of the medical evidence. The Strength of
Recommendation Taxonomy (SORT) (Ebell et al.,
2004), used in the 2011 ALTA shared task, is one
such taxonomy. SORT uses a 3-point scale defined
as follows:

A Recommendation based on consistent and good
quality patient-oriented evidence.

B Recommendation based on inconsistent or lim-
ited quality patient-oriented evidence.

C Recommendation based on consensus, usual
practice, opinion, disease-oriented evidence,
and case series for studies of diagnosis, treat-
ment, prevention, or screening.

In addition to the above definitions, Ebell et al.
(2004) provides details on how to determine each
grade, including a flowchart.
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Medical evidence is not necessarily bound to
one publication only. There may be several pub-
lications related to a particular disease, treatment
or diagnosis, and each of them may be of different
quality. Further, it may indeed happen that each
of the separate publications produces consistent re-
sults, but the evidence of the set of publications is
inconsistent; when that happens the evidence grade
cannot be of type A, as per the definitions above.

3 Related Work

The 2011 ALTA shared task overview paper (Mollá
and Sarker, 2011) presents a short survey of related
work prior to 2011. As we see in this section, there
has been limited research since then.

None of the participants to the 2011 ALTA
shared task (Mollá and Sarker, 2011) outperformed
a majority baseline (“predict B”, with an accuracy
of 0.4863), and the participating systems did not
publish the system descriptions.

A more sophisticated approach developed by
the organisers of the 2011 shared task did man-
age to beat the baseline, reaching an accuracy of
0.6284. Their approach was based on cascaded
Support Vector Machine (SVM) classifiers which
were trained to separate class A and C from the de-
fault B with high precision. These SVM classifiers
used combinations of the following features: n-
grams of the abstract and title (with general medical
semantic types replacing specific medical terms),
and publication types (combining the publication
types provided in the original abstracts with types
generated by applying ad-hoc rules). The work was
subsequently extended and published with more de-
tail by Sarker et al. (2015).

Gyawali et al. (2012) reported an improved ac-
curacy of 0.7377 on the same dataset by using a
two-level stacking approach. In the first level, mul-
tiple SVM classifiers are trained using separate
feature sets. Then, their output is fed to a sec-
ond SVM classifier. Their feature sets included
publication types, MeSH terms, title, abstract text,
abstract method section, and abstract conclusion
section. All of these features were as provided by
the abstracts, except for the method and conclusion
section, which were determined heuristically when
not provided by the abstracts.

Byczyńska et al. (2020) reported an accuracy
of 0.7541, again on the same dataset, after apply-
ing a wide range of different variants of stacked
classifiers.

00001 B 10553790 15265350
00002 C 12804123 16026213 14627885
00003 B 15213586
00004 A 15329425 9058342 11279767

Figure 1: Sample training data. Each row indicates one
evidence that needs to be graded. The first number is
the evidence ID. This is followed by the evidence grade,
and the list of PubMed IDs for the relevant documents.

Table 1 shows the results of the works mentioned
in this section, with their confidence intervals as
calculated by the Wilson score interval with conti-
nuity correction (Brown et al., 2001). According
to the confidence intervals shown on the table, the
difference between the systems by Gyawali et al.
(2012) and Byczyńska et al. (2020) is not statisti-
cally significant.

4 Evaluation Framework

The data for the 2021 shared task includes a train-
ing set and a development set that were available
to the participants. The final ranking was made on
a separate test set and was available to the partici-
pants (without the target labels) for a limited time
near the end of the shared task.

The training, development, and test sets were the
same as for the 2011 shared task, after shuffling
the rows and changing the row IDs. The corpus
from which this data has been obtained has been
described by Mollá et al. (2016). Figure 1 illus-
trates a fragment of the training data. Together
with the data formatted as the samples of Figure 1,
the participants were provided with the contents of
the relevant abstracts as separate files.

The evaluation framework was implemented as
a CodaLab competition3. The facilities available
at CodaLab made it possible to specify our own
evaluation script, and also gave us flexibility to de-
sign multiple phases and include a leaderboard and
discussion forum. Additional information about
the 2021 ALTA shared task was made available in
the ALTA website4.

The CodaLab competition was structured into
two phases. In a first, development phase, all teams
had access to the training and development sets
and they could make an arbitrary number of sub-
missions daily, for a maximum of 100 submissions
in total. During the development phase, partici-
pant teams could submit the results of running their

3https://competitions.codalab.org/competitions/33739
4http://www.alta.asn.au/events/sharedtask2021/
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System Accuracy 95% CI

Majority Baseline 0.4863 0.4150–0.5583
Mollá and Sarker (2011) 0.6284 0.5564–0.6951
Gyawali et al. (2012) 0.7377 0.6696–0.7961
Byczyńska et al. (2020) 0.7541 0.6869–0.8108

Table 1: Accuracy and 95% confidence intervals of prior work. The confidence intervals were calculated using the
Wilson score interval with continuity correction.

system on the development data, and the results
could enter a public leaderboard. In the second,
test phase, all teams had access to the test data set
and each team could make a maximum of 3 sub-
missions. The final ranking was made based on the
best submission of each team made during the test
phase. Table 2 shows the timeline and submission
number limits of each phase.

The evaluation metric was accuracy.

5 Participating Systems

As in past ALTA shared tasks, submissions were
made by teams in two categories: a student cate-
gory, and an open category. In teams of the student
category, all members must be university students
and none of the team members could have a PhD.
Teams that did not qualify for the student category
could participate in the open category.

A total of 16 teams registered in the student cat-
egory, and 5 teams registered in the open category.
Of these, only 5 teams, all from the student cat-
egory, submitted runs in the test phase for final
ranking.

Table 3 shows the results of the systems by the
participating teams. As can be observed, none of
them improves the upper confidence interval of
the majority baseline (0.5583). A McNemar’s test
for statistical significance confirmed that none of
the submitted systems had a statistically significant
difference with the majority baseline.

Of the 5 teams submitting in the final phase,
3 published a system description which is avail-
able in the 2021 ALTA proceedings. Team
SarkerLab (Guo et al., 2021) experimented with
the use of SVM and RoBERTa. Team Heat-
wave (Koto and Fang, 2021) applied an ensem-
ble method with transformer variants including
BioMed, RoBERTa, and ELECTRA. Finally, team
OrangUtanV3 (Parameswaran et al., 2021) applied
a cascaded approach that used BioBERT and SVM
classifiers. Whereas team Heatwave’s classifiers
attempted to generate the final evidence grade of

the collection of abstracts related to a question, the
other two teams attempted to classify individual
abstracts and the final result was obtained by com-
bining the outputs of the individual classifications.

6 Conclusions

The participating systems appeared to obtain a
score slightly better than the majority baseline
but the difference was not statistically significant.
These results underperformed those reported by the
organisers of the 2011 shared task paper and subse-
quent work. The participating systems attempted
to use some of the latest developments on machine
learning algorithms and architectures. The reason
of their relatively lower performance may be due to
the choice of features. Possibly, better results could
have been obtained by incorporating information
such as the publication type, or by focusing on spe-
cific parts of the abstracts such as the methods or
conclusions sections, as related work has shown to
be most influential for this task.
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Abstract

We describe our methods for automatically
grading the level of clinical evidence in med-
ical papers, as part of the ALTA 2021 shared
task. We use a combination of transfer learn-
ing and a hand-crafted, feature-based classi-
fier. Our system (“orangutanV3”) obtained an
accuracy score of 0.4918, which placed third
in the leaderboard. From our failure analysis,
we find that our classification techniques do
not appropriately handle cases when the con-
clusions of across the medical papers are them-
selves inconclusive.

We believe that this shortcoming can be
overcome—thus improving the classification
accuracy—by incorporating document simi-
larity techniques.

1 Introduction

The recent COVID-19 pandemic has once again
highlighted the importance of Evidence-Based
Medicine (EBM) when deciding the course of
treatment (Xu et al., 2020) as social media and
television shows are being flooded by so-called
experts, who have voiced unproven treatments
for COVID-19 such as using hydroxychloroquine
(Greenhalgh, 2020; Aquino and Cabrera, 2020).
However, the main challenge with EBM is that it
is a manual and tedious process and it is very hard
for practitioners to keep up with the rise in medical
research (Ghosh, 2004; Davies, 2007).

The challenges with EBM were no less true in
2011, when the Australasian Language Technol-
ogy Association (ALTA) organised a shared task
challenge to automatically grade evidence (Molla
and Sarker, 2011). The task was to grade evidence
based on an EBM framework which is the Strength
Of Recommendation Taxonomy (SORT) (Ebell
et al., 2004). ALTA decided to revisit the 2011
challenge again this year (2021), motivated by the

leaps in Natural Language Processing (NLP) tech-
niques that have occurred meanwhile (Torfi et al.,
2020).

We investigate the following research questions
with repsect to this challenge:

• RQ1: Can we solely use transformers to ac-
curately perform SORT?

• RQ2: Can we improve the performance of
Transformers by incorporating author and
journal features?

Our experimental results suggest that these two
approaches do not perform well. Our team placed
third in the leaderboard with an accuracy score of
0.4918. None of the scores on the leaderboard beat
the winning accuracy score in 2011, of 0.6284.
This prompted us to perform an in-depth analy-
sis of our approach, and how our work can be im-
proved in the future to increase the overall accu-
racy of classification.

2 Related Work

In the medical literature, there are many differ-
ent taxonomies that are used in order to rank the
grade of a clinical study (Abrams et al., 2007;
Guyatt et al., 2004). One of the commonly used
taxonomies, due to its simplicity, is SORT (Ebell
et al., 2004). SORT has been used in deciding
whether to recommend root canal treatments (De-
Deus and Canabarro, 2017), sports injury reha-
bilitation strategies (Bell et al., 2018; Rodriguez
et al., 2019), and in evaluation of cognitive be-
havioural treatment (Chang et al., 2020; Baez
et al., 2018). There are three grades: A (strong), B
(moderate) and C (weak). Grade A reflects consis-
tent and good-quality, patient-oriented evidence;
Grade B reflects being based on inconsistent or
limited quality patient oriented evidence; lastly,
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grade C reflects a recommendation based on con-
sensus, usual practice, opinion or disease-oriented
evidence.

The classification of SORT is manually done by
medical practitioners, and automating it is still in
its infancy. To the best of our knowledge, the only
researchers who explored automating SORT are
Molla and Sarker (2011). In their work, the au-
thors used a set of classifiers that utilised different
feature sets such as n-grams, publication type and
titles and then applied multiple SVM classifiers.
They obtained an accuracy score of 0.6284.

Transfer learning has shown vast improvement
on a variety of downstream tasks such as sum-
marization, translation, and question and answer
interactions (Torfi et al., 2020). One popular
transfer learning method that is widely adapted
is BERT (Devlin et al., 2018). Driven by the
success of BERT, Lee et al. (2020) introduced
BioBERT (a biomedical focused version of BERT)
for tasks such as biomedical Named Entity Recog-
nition (NER), relation extraction, and summariza-
tion in the biomedical literature. Recently, Oni-
ani and Wang (2020) demonstrated that BioBERT
provides an effective method for chatbots answer-
ing questions related to COVID-19.

3 Data Set

The data set1 provided by the organisers of the
ALTA shared task consists of a collection of
PubMed abstracts. There are 677 medical ab-
stracts for training, 178 for development, and 183
for the testing set. The training and development
data set come with the evidence ID, followed by
SORT grade, and finally a list of PubMed IDs of
the abstracts. The test data contains the same, ex-
cept for the SORT grade.

We analysed both the development and training
data sets to understand the characteristics of the
data. Table 1 shows the distribution of the evi-
dence that contains exactly one abstract and more
than one abstract. We include the class distribu-
tion of both training and development sets. Across
three data sets on average, the percentage of evi-
dence IDs that contains more than one PubMed ID
are 57%. From the visual inspection of our train-
ing set, we have observed that the majority of the
queries (77%) tend to be graded as A and B. We
have also noticed that the distribution of classes

1https://competitions.codalab.org/
competitions/33739

Data = 1 > 1 No No No
Set abstract abstract of A of B of C
Train 293 384 212 311 154
Dev 113 65 48 80 50
Test 105 78 NA NA NA

Table 1: Distribution and abstracts in the data sets.

in development follows closely that of the training
set.

4 Methodology

We employed a two-phase approach to tackle the
ALTA challenge. In the first phase, we used a pre-
trained BioBERT model and in the second phase,
we used an SVM classifier with handcrafted fea-
tures such as h-index and the journal’s impact fac-
tor. In this section, we describe our method in
detail, along with the steps that we performed.
We have made our system’s source code publicly
available on GitHub.2

4.1 Phase 1—BioBERT
We used a pre-trained BioBERT model biobert-
base-cased-v1.23. The two primary reasons for
choosing this model is that the implementation is
readily available via huggingface,4 and that it has
been trained on PubMed. Since our task relates
to grading medical abstracts which are obtained
from PubMed, this gives us further confidence that
BioBERT would be the right choice for our task.

We first extract the abstracts using the PubMed
IDs. If there are multiple PubMed IDs for a piece
of given evidence, we treat each of them as inde-
pendent from one another. This made the imple-
mentation easier. We then pre-processed the texts
with Scispacy5 by replacing entities of diseases
with [DISEASE], drug names as [DRUGS] and
treatment plans with [TREATMENT]. Replacing
these instances with a generic tag ensures that
the classifier does not overfit or get influenced by
these factors. We used the same pre-trained model
for pre-processing. In addition to that, we replaced
instances of sample size conducted in the stud-
ies by following the recommendation from Biau
et al. (2008); Charan and Biswas (2013) into three
generic tags: [SMALL] when the sample size is

2https://github.com/prasys/
OrangUtanV3ALTASharedTask21

3https://huggingface.co/dmis-lab/
biobert-base-cased-v1.2

4https://huggingface.co/
5https://allenai.github.io/scispacy/
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less than 15, [MEDIUM] when it is between 15–
100, and [LARGE] when it is greater than 100.
These additional steps were done in order to pre-
vent the model from over-fitting.

We then built two classifiers of BioBERT. The
first classifier (C1) distinguishes C-graded docu-
ments from non-C graded documents. As for the
non-C graded documents, it is then fed to our sec-
ond BioBERT classifier (C2) which distinguishes
A-graded documents from B-graded documents.

We evaluated the performance of our classifier
using the validation data set. As for fine-tuning
the classifier, we split 80% of our training data
for training and the remaining 20% for fine-tuning.
We froze all the layers of the model except for the
final layer which is the classification layer. We
used the Adam Optimizer with a learning rate of
10−5 for 10 epochs for C1 and a learning rate of
10−3for 15 epochs for C2. We set the batch size to
be 64 for both C1 and C2. For both the classifiers,
we used our validation set’s accuracy score as an
early stopping criterion. We stop the training if the
score does not increase for 5 consecutive epochs or
the maximum number of epochs has been reached.
Our model was entirely implemented using hug-
gingface 4.6.1.

4.2 Phase 2—SVM

In the second phase, we use an SVM classifier
(C3) with the following feature set; authors’ h-
index (averaged across all of the authors), jour-
nal’s impact factor and also the journal rank. Past
studies (Lee et al., 2002; Saha et al., 2003) have
shown that these criteria can be used to judge
the quality of medical literature and we hypoth-
esise that these would further help to distinguish
B graded articles from A graded articles given that
the criteria for these grades are finer.

We made several assumptions when we derived
our features. Firstly, given that the data set con-
tains articles published from the late 1980s up to
the late 2000s, the journal name at the time of pub-
lication may have changed. To tackle this prob-
lem, we obtained the current journal name using
google-scholar-crawler6 to crawl Google Scholar
in order to retrieve the journal’s current name,
along with each author’s h-index. This took us
a considerable amount of time, as we were being
rate-limited by the number of queries that Google

6https://github.com/geekan/
google-scholar-crawler

System Accuracy
Score

C1 + C2 0.4494
C1 + C3 0.4228
C1 + C2 + C3 0.6573

Table 2: System evaluation on development set.

System Accuracy
Score

C1 + C2 0.4808
C1 + C3 0.5010
C1 + C2 + C3 0.4918

Table 3: System evaluation on test set.

allows, and to the best of our knowledge, there
aren’t any publicly available APIs for us to use.

We took the journal ranking and the impact fac-
tor from the 2020 SCImago7 because we were un-
able to obtain the journals ranking and impact fac-
tor at the time of publication of the article.

We use sklearn 0.9.48 for implementation and
kept the default kernel parameters of the SVM
classifier as it yielded the best results based on our
early experimentation. We used the same split as
that in our phase one classifier.

4.3 Final Prediction

To make the final prediction, first we ran the ab-
stracts through C1 and then for those classified as
non-C, we ran through C2 and finally we ran the
same set again through C3. We set C3 to have
higher precedence than C2. If a piece of evidence
is categorised as A by C2 and as B as C1, we set
the grade to B. If there are multiple abstracts for
a given evidence ID, we assign a score of 3 for A,
2 for B and 1 for C. We then calculate the mean
score and assign the grade closest to the score.

5 Results

ALTA chose CodaLabs as the submission plat-
form. The organisers provided us with both the
development and test set. In CodaLabs, partic-
ipants are allowed to submit an unlimited num-
ber of times for the development set but are only
limited to three submissions for the test set. The
submissions are evaluated by using the accuracy
score. We ran our experiments on Google Cloud
Platform with 4 vCPUs, 16 GiB of RAM and an
NVIDIA Tesla A100. We present our scores on

7https://www.scimagojr.com/
8https://scikit-learn.org/stable/
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the development set in Table 2 and summarise and
present our final results on the test set in Table 3.

5.1 Discussion
From our experimental results on the development
set, we found that our approach of using C1 + C2 +
C3 yielded the best results with a score of 0.6573
and a two-way ANOVA test confirmed that there
are statistically significant differences between the
systems (p < 0.05). Therefore, we picked C1 +
C2 + C3 to be used in the test portion.

When we evaluated our system on the test por-
tion, we were surprised to see that we obtained a
score of 0.4918. This suggested that our models
are most likely over-trained or have not learnt to
generalise very well. We went back to the draw-
ing board to see if we could further improve the
scores. Given the limited number of submissions,
we decided to submit the other two models to see
if they would fare better. To our surprise, C1 + C3

gave us the best results with a score of 0.5010. A
one-way ANOVA showed no statistically signifi-
cant difference between the scores at the 0.05 level
and so we decided to look deeper at C1 + C2 + C3

to have an understanding of what went wrong. We
discuss this in subsection 5.2, 5.3 and 5.4.

5.2 Ambiguity in Classifying Different
Grades

We first evaluated the performance of our three
proposed systems (C1 + C2, C1 + C3, and C1 +
C2 + C3) on the development set containing only
a single abstract and found that the best perform-
ing classifier is C1 + C2 with an accuracy score of
0.8314, followed by C1 + C2 + C3 with an accu-
racy score of 0.8167, and finally C1 + C3 gave us
a score of 0.7854. Our one-way ANOVA test also
showed that there is a statistically significant dif-
ference (p < 0.05) between C1 + C2 + C3 and the
others.

Looking at the causes of failures with evidence
containing a single abstract, we notice that distin-
guishing between A and B can be challenging. We
observed that out of 13 A grades, we incorrectly
classified 5 as B. As for B grades, out of 33, we
misclassified 6 as A. Additionally, we have notice
that 5% of the instances where C grade evidence
are misclassified as A and B. We provide some ex-
amples of our findings from the development set
in Table 5.

In the first example, the evidence is about diag-
nosing carpal tunnel syndrome. If we take a closer

ID Abstracts Predicted Actual
10111 Walker et al. (1993);

Zajecka (2001); Fer-
guson et al. (2001)

A B

10132 Frisancho (2000);
Parsons et al. (1999);
Hediger et al. (1999)

B B

Table 4: Comparison of predictions made by our sys-
tem and the actual label for evidence IDs with multiple
abstracts.

look at the abstract, we observe keywords that are
commonly found in A and B graded evidence such
as “p-value” , “CI” . However, unlike in many
A and B graded papers, the authors of this paper
mention that a “future randomised control trial is
required to validate the results”. We observed that
our model did not understand the context that the
randomised control trial has not been performed
and therefore classified it as B.

This brings us to our second example, the evi-
dence is on managing chronic fatigue syndrome in
a primary care setting. Our classifier classifies it as
C. From our visual inspection, we agree with the
decision of the classifier. However, the annotators
have graded it as B. Since none of the authors is
an EBM practitioner, we cannot accurately deter-
mine the reason for this. We believe that an EBM
practitioner would be able to provide us with how
the decisions are derived, which can help to fur-
ther improve our model. We’ll leave this to be part
of our future work.

As for the last example, this is an example of
how authors’ h-index and journal ranking influ-
ences the final grading of the evidence. Initially,
the C1 + C2 classifiers labelled it as grade B but
C3 classifier classified it as A. Upon inspecting
further, we find that C3 classified it as A as the
authors’ h-index and the journal ranking fall in the
A listing. We also observed that there are times
where this information helped to correct the classi-
fication of phase one classifiers such as in evidence
ID 10079 (Jackson et al., 1999) and 10042 (Or-
ton and Omari, 2008). From our analysis, we hy-
pothesise that these factors influence the grading
of the paper in a similar way to the way funding
source influences the quality of the study (Reed
et al., 2007). Although SORT’s assessment crite-
ria do not mention this, our investigation suggests
that this needs to be explored further.
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5.3 Ablation study

To further understand the effect of the features that
are used in C3, we perform an ablation study on
the development set that contains a single abstract.
Keeping it with one single abstract allows us to
separate our assumption with multiple documents
per query. Additionally, we decided to only tune
the C3 classifier whilst keeping the other two clas-
sifiers as they are as we are interested in the impact
of how different features influences the score. We
summarise our results in Table 6.

For our ablation study, we looked at several as-
pects. First, we looked at using the impact on
the accuracy score by solely using the primary au-
thor’s h-index and averaging all the authors’ h-
index scores. We have noticed that if we were to
use the primary author’s h-index instead of calcu-
lating the mean h-index score of all the authors,
the score decreased from 0.6603 to 0.6327. This
is mainly because in the medical literature field,
generally, the last author is the grand-holder or
a prominent researcher in the field (Pina et al.,
2019). From our test, we find no statistically sig-
nificant difference (p < 0.05). However, given
that the number of cases containing 1 abstract is
small (n = 113), we think that the statistical power
is limited, thus we decided to proceed on with our
decision of averaging the h-index.

Additionally, we investigated independently the
impact on journal ranking and h-index. We found
that these two features have a high correlation co-
efficient (r) score of 0.92. However, if we re-
moved one of the features, we notice that the
scores decreases from 0.8167 to 0.7015 or to
0.6716. Our experimental results suggest that
even highly correlated variables could carry non-
redundant information, thus removing either de-
grades the overall information content.

5.4 Challenges with Averaging Method

Next, we repeated the experiment again—but this
time solely focusing on evidence containing more
than one abstract in order to test the effectiveness
of our averaging method. From our experiments,
we find that the best performing classifier (C1 +
C2 + C3) could only obtain an accuracy score of
0.4183—which is almost half the performance of
the classifier on the queries containing a single ab-
stract. This suggests that averaging the grading of
each abstract is inadequate.

The score that we obtained only provides an in-

dicator that our assumption needs to be redefined
but it does not provide insights into why our per-
formance is higher in the development set than in
the test set. To answer this question, we looked at
cases where prediction matches with annotators as
well as the cases in which it does not match. We
provide some examples of our findings from the
development set in Table 4. Given that we have a
limited amount of space—we provide a citation to
the paper for the readers to examine instead of the
complete abstract.

For the first example, the papers describe treat-
ments of antidepressant-related sexual dysfunc-
tion. If we follow our method, all of the papers are
graded as A since they fit the criteria to be graded
as such. However, it was a surprise to us as to
why the annotators classified it as B. Upon closely
examining the three papers, we find that these pa-
pers suggest completely different mechanisms on
how to address sexual dysfunction thus bumping
down the grade to be B instead of an A. This find-
ing prompted us to look closer into the way of how
the final scores are calculated.

In the second example, the three papers describe
the impact of obesity in children. If these are
treated as a standalone, they are ranked A, B and
C individually, based on SORT. In our method,
we then average the grades to produce the final
grade thus giving the evidence an overall score
of B—matching the annotator’s grade. However,
we believe that this is purely by chance as when
we visually inspect the abstracts—we find that the
conclusions of the studies do not agree with one
another, thus placing it in the B category. A bet-
ter approach could be to use a Siamese Manhattan
LSTM (Mueller and Thyagarajan, 2016) or even
using Word Mover (Kusner et al., 2015) document
similarity measures. Incorporating reinforcement
learning might be able help our model to distin-
guish better as well. We will explore this as part
of our future work.

6 Conclusion

We presented an approach to automatically grade
evidence using a combination of transfer learning
and a feature-based classifier. We competed in
the ALTA 2021 Competition under the team name
“orangutanV3”. Despite achieving an accuracy
score of 0.4918, we did not manage to beat the cur-
rent state-of-the-art from ten years ago. The pri-
mary reason for our low score is attributed to our
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Evidence
ID

Abstract Predicted Actual

10141 Plaisance et al.
(2000)

B C

10169 Kroenke et al.
(1988)

C B

10091 D’Arcy and
McGee (2000)

B A

Table 5: Comparison of predictions made by our sys-
tem and the actual label for an evidence ID with a single
abstract.

h-index Journal Impact Accuracy
Rank Factor Score

Average 7 7 0.6603
1st Author 7 7 0.6327
7 3 7 0.5042
7 7 3 0.5565
Average 3 7 0.6716
1st Author 3 7 0.6654
Average 7 3 0.7015
1st Author 7 3 0.6968
Average 3 3 0.8167
1st Author 3 3 0.7669

Table 6: Ablation study of the features features used in
C3 which includes h-index (primary author’s and aver-
age across all authors), the journal rank and the impact
factor.

assumption of averaging the grades to obtain the
final grade. As for our RQ1, we find that solely us-
ing a transformer on single abstracts is sufficient,
as we obtained a score of 0.8314 in our develop-
ment set. As for our RQ2, we obtained a score
of 0.8167, although this gives us a lower score
compared to using transformers alone. We still
think that combining transformer along with the
SVM classifier is a a better option. However, we
do not have a high statistical power to support the
claim that using two models improve the overall
accuracy, as we only have a limited sample size.
We plan to explore further with a larger data set
as part of future work. Additionally, we plan to
re-implement the technique used by (Molla and
Sarker, 2011) in order to properly evaluate how
our system compares, when focusing on queries
with a single document.
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Abstract
This paper describes our approach for the auto-
matic grading of evidence task from the Aus-
tralasian Language Technology Association
(ALTA) Shared Task 2021. We developed two
classification models with SVM and RoBERTa
and applied an ensemble technique to combine
the grades from different classifiers. Our results
showed that the SVM model achieved compa-
rable results to the RoBERTa model, and the
ensemble system outperformed the individual
models on this task. Our system achieved the
first place among five teams and obtained 3.3%
higher accuracy than the second place.

1 Introduction

Evidence-based medicine (EBM) requires the mak-
ing of clinical decisions using the current best exter-
nal evidence rather than solely relying on clinical
experience and pathophysiologic rationale (Sackett
et al., 1996). To adhere to EBM best practice, prac-
titioners need to identify the best quality evidence
associated with a clinical query. To grade the qual-
ity of evidence, Ebell et al. (2004) proposed the
Strength of Recommendation Taxonomy (SORT).
SORT has a three-levels for rating—A (strong), B
(moderate), and C (weak), where A-level is based
on high-quality studies with consistent results; B-
level is based on high-quality studies with inconsis-
tent results or some limitations; C-level is based on
the studies with severe limitations. It is a straight-
forward grading system that allows clinical experts
to rate individual studies or bodies of evidence
based on quantity, quality, and consistency.

To address the challenging problem of auto-
matically grading the quality of evidence, the
Australasian Language Technology Association
(ALTA) Shared Task 2021 organized a competi-
tion. The participants were required to develop
a system to predict the grade of evidence given
multiple related medical publications. Our team

trained several supervised classifiers to address the
problem. Our approach included traditional super-
vised classification models such as support vec-
tor machines (SVM) (Cortes and Vapnik, 1995),
neural network models using pretrained models
(RoBERTa) (Liu et al., 2019), and an innovative
ensemble system which combines the predictions
of multiple classifiers. Our results showed that the
SVM model achieved comparable results to the
RoBERTa model, and the ensemble system outper-
formed the individual models on this task. The
ensemble model combines the prediction from mul-
tiple classifiers in a unique manner: grades (A, B
or C) predicted by each classifier is first converted
into a continuous number, and then all the numbers
are added for each instance. Using the training
data, the best separations for the numeric totals
are computed. These numeric boundaries are then
used to convert continuous scores in the test set
to discrete evidence grades. Our system achieved
the first place among five teams and obtained 3.3%
higher accuracy than the second place.

2 Related Work

ALTA Shared Task 2021 is a re-visit of ALTA
Shared Task 2011 (Molla and Sarker, 2011). Pre-
vious studies have developed several SVM-based
systems for this task. Molla and Sarker (2011)
used a sequential approach to combine multiple
individual SVM models trained with the features
from the titles, body of the abstracts, and publi-
cation types. Gyawali et al. (2012) expanded the
feature set proposed by Molla and Sarker (2011)
with the Medical Subject Headings (MeSH) terms
and developed a stacking-based approach to inte-
grate predictions from multiple SVM models. By-
czyńska et al. (2020) experimented with a larger set
of features and applied multiple machine learning
techniques such as classical machine learning mod-
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els, neural networks, game theory, and consensus
methods. In our work, we trained SVM models
on a feature set similar to Byczyńska et al. (2020).
We also applied a pre-trained transformer-based
model named RoBERTa (Liu et al., 2019), which
has achieved state-of-the-art results in a wide range
of natural language processing (NLP) tasks.

3 Data Description

The data for this shared task consisted of a set
of evidence grades under the SORT criteria and
a list of related publications associated with each
evidence grade. The publications were obtained
from PubMed 1 and were provided in the form of
XML files which contained the title, the abstract,
and some meta-data (eg., publication types, MeSH
terms). Some data statistics are shown in Table 1.

Train (%) Dev (%) Test (%)
A 31.3 27.0 30.6
B 45.9 44.9 48.6
C 22.7 28.1 20.8
Total size 677 178 183

Table 1: The distribution of the three grades and data
set sizes for the training, development, and test sets.

4 Method

4.1 SVM
We implemented the SVM models with Python
3.7 and the sklearn tool (Pedregosa et al., 2011).
We trained multiple SVM models using different
feature sets for each, which included the number
of related publications (npmid), journal titles, and
other features, as follows:

N-gram Features (n-gram) The n-gram features
were generated from the texts of the titles and the
bodies of the abstracts. Because one evidence grade
can be based on multiple publications, we com-
bined the titles and the abstracts of all publications
to create sequences of titles and abstracts per evi-
dence, respectively. Then, we computed the term
frequency–inverse document frequency (TF-IDF)
features from the n-grams (n = 1, 2, 3, 4) of the
combined sequences.

Consistency Features (cons) As mentioned in
Ebell et al. (2004), the consistency of experimental

1https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

results can affect the evidence strength. Inspired
by that, we detected the mentions of consistent
results in the body of abstracts by keyword match-
ing. For each evidence, if any of the publications
matched the word ”consistent” or ”consistency” in
the abstract, the consistency feature was set as 1;
otherwise it was set to 0.

Publication Types (pubtype) As discussed in
Molla and Sarker (2011) and Byczyńska et al.
(2020), publication types can be a strong indicator
of the evidence strength. We extracted the publi-
cation type terms tagged as PublicationType in the
XML files and assigned a pseudo publication type
”unknown” to the publications without any Publi-
cationType tag. In addition, we used the PubMed
tool 2 to retrieve the publication type IDs. We used
one-hot encoding to encode the publication type
terms and IDs, respectively. Also, we generated a
publication type rank according to the level of evi-
dence pyramid in Sarker and Mollá-Aliod (2010).
The rank ranged from 0 to 5, where higher number
indicates higher quality.

MeSH MeSH terms provide information regard-
ing the topics covered in a publication. We used
the PubMed tool to request MeSH term IDs and
represented the MeSH feature by one-hot encoding.

4.2 RoBERTa

Encouraged by the success of the pre-trained
transformer-based models in recent years, we devel-
oped a classifier using RoBERTa, one of the most
popular pre-trained transformer-based models. The
classification model architecture was the same as
the model in (Liu et al., 2019). It consists of an
encoder, which converted the input text sequence
into an embedding vector, and a classification layer
with softmax activation, which projected the em-
bedding vector into a class probability vector. The
inputs were the abstract texts of the publications as-
sociated with each evidence instance. However, if
we attached the abstracts into one sequence, the in-
put length often exceeded the maximum sequence
length limitation of RoBERTa, which is 512 char-
acters. Therefore, we re-organized the dataset by
splitting the evidences involving multiple publica-
tions into different instances so that each instance
only contained one evidence and one publication,
as shown in Figure 1. During the inference phase,

2https://www.ncbi.nlm.nih.gov/pmc/
tools/get-metadata/
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Figure 1: An example of the data re-organization pro-
cess. The first column contains the evidence IDs, the
second column contains the SORT grades, and the third
column contains the publication IDs.

for each evidence, the class probability vectors of
multiple publications were averaged, and the class
with the highest probability was chosen as the final
prediction.

4.3 Ensemble

Because the classes A, B and C represent the
strength of evidence from strong to weak, we con-
sidered the task of grading as a regression problem
(rather than a classification problem) and converted
the predictions from the classifiers into numbers
on a numeric scale. Specifically, we represented
the classes A, B, and C as the numbers 0, 1, and 2.
For each instance, we computed a numeric score
(rather than a discrete category) by adding up the
converted predictions from all classifiers. Follow-
ing this process, we performed grid search to find
two thresholds in which the evidences with scores
smaller the lower threshold were classified as A,
those larger than the higher threshold were classi-
fied as C, and those with scores between the lower
and upper thresholds were classified as B. Opti-
mal values for the thresholds were based on the
training set. In addition, considering the fact that
the classifiers with low accuracies may hurt the
performance of the ensemble model, we greedily
removed the least accurate classifiers to find the
classifier set that achieved the best performance on
the training/development set.

5 Experiments

SVM We trained the SVM models for all possi-
ble combinations of the features and experimented
with not using class weights and using the empir-

ical class weights WA = 1.2, WB = 1.2, and
WC = 1.0. In total, we created 127 feature combi-
nations and obtained 254 classification models. For
each model, we performed grid search on the de-
velopment set to find the best configuration for the
regularization parameter C ∈ {1, 2, 4, 6, 8} and
the kernel type K ∈ {”linear”, ”rbf”}.

RoBERTa The specific version of RoBERTa we
used was RoBERTa-large. According to the pre-
liminary experiments, we set the batch size as 32,
the learning rate as 8 × 10−6, and the maximum
sequence length as 256. The model was trained for
10 epochs with 3 random initialisations.

For both SVM and RoBERTa, we tuned the pa-
rameters based on the training set and the devel-
opment set to find the optimal parameters, and we
re-trained the model with the optimal parameters
on the whole data set (i.e., the combination of the
training set and the development set). The reported
results of the test set were predicted by the models
trained on the whole data set, and those of the de-
velopment set were predicted by the models trained
on the training set.

6 Results

Table 2 shows the results of the best individual
SVM model, the RoBERTa model, and the ensem-
ble model on the development set and the test set.
For the SVM model, the best feature combination is
n-gram+pubtype+npmid. The results show that the
performance of the RoBERTa model is comparable
to the SVM model, and the ensemble model out-
performed the other two models. However, the dif-
ferences between the three models were not statis-
tically significant according to the 95% confidence
intervals. Also, we observed that the performances
were considerably lower for the test set compared
to the development set. This suggests that the mod-
els may overfit on the training/development data
because of the small data size.

For further error analysis, we plotted the con-
fusion matrix for our best system (ie., the ensem-
ble model), shown in Figure 2. As we can see,
the majority of errors can be attributed to the mis-
classification of the classes A and C. Most A-level
and C-level evidences were predicted as B. This
can be another indicator of overfitting because the
majority evidences in the training set were graded
as B.
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Model Dev 95% CI Test 95% CI
SVM 0.63 0.48-0.76 0.48 0.34-0.60
RoBERTa 0.58 0.44-0.70 0.48 0.34-0.62
Ensemble 0.7 0.58-0.82 0.54 0.38-0.68

Table 2: The accuracies and 95% confidence intervals
(CIs) on the development and test set.
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Figure 2: The confusion matrix for the result of the
ensemble model on the test set.

7 Discussion

As illustrated in Table 6, the RoBERTa model
did not outperform the SVM model on this
task. This finding is somewhat surprising because
many recent studies have shown that pre-trained
transformer-based models can achieve the state-
of-the-art performance on a wide range of natural
language processing tasks (Liu et al., 2019; De-
vlin et al., 2019; Nguyen et al., 2020; Yang et al.,
2019). A possible explanation for this can be that
the most important factor for the evidence strength
grading is the publication type and the consistency
of the experiments (Ebell et al., 2004). In our ex-
periments, the input for RoBERTa was only the
abstracts, which rarely contained the publication
type information. In contrast, in the abstracts, the
consistency of the experiments are usually implic-
itly described by comparing the experimental re-
sults which involve numbers. It has been suggested
that the pre-trained transformer-based models lack
in the ability of effectively representing numbers
(Wallace et al., 2019). Therefore, further studies
will need to be undertaken to explore how to incor-
porate the meta-data information into transformer-
based models and how to make such models under-
stand/compare numbers.

Although we achieved the top place in this com-

petition, some systems described in past publica-
tions achieved higher accuracies than our best re-
sult (Molla and Sarker, 2011; Gyawali et al., 2012;
Byczyńska et al., 2020). We noted that all of these
systems used the publication type features. More-
over, Byczyńska et al. (2020) showed that using the
single publication type feature achieved 70% accu-
racy on the test set. However, in our experiments,
our model with the single publication type feature
only achieved 52% accuracy. We speculate that the
cause of the performance gap might be due to the
fact that we processed the publication type feature
differently compared to the abovementioned publi-
cation. In our method, we simply used the publica-
tion type terms extracted from the XML files, while
Byczyńska et al. (2020) used a rule-based system
to identity the publication types from the titles and
the abstracts. Further research is needed to explore
effective methods for processing the publication
type feature.
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Abstract

In this paper, we investigate the utility of
modern pretrained language models for the
evidence grading system in the medical lit-
erature based on the ALTA 2021 shared
task. We benchmark 1) domain-specific mod-
els that are optimized for medical literature
and 2) domain-generic models with rich la-
tent discourse representation (i.e. ELECTRA,
RoBERTa). Our empirical experiments reveal
that these modern pretrained language models
suffer from high variance, and the ensemble
method can improve the model performance.
We found that ELECTRA performs best with
an accuracy of 53.6% on the test set, outper-
forming domain-specific models.1

1 Background

Evidence-Based Medicine (EBM) is an approach
by health practitioners to integrate individual clini-
cal expertise and external evidence from medical
literatures in making decisions about the care of
patients (Sackett et al., 1996). In practice, under-
standing the current best evidence from the liter-
ature minimizes the unexpected risk of outdated
treatments that can be detrimental to patients.

Strength of Recommendation Taxonomy
(SORT) (Ebell et al., 2004) is one of the standard
scale systems for grading evidence in medical
literature and it has been used to assist the EBM
approach. SORT groups a medical literature into
one of three classes: A (consistent and good-
quality patient-oriented evidence), B (inconsistent
or limited-quality patient-oriented evidence) and
C (other evidence, such as consensus guidelines,
usual practice and opinion). While obtaining these
grades on a wide-scale is expensive and requires

∗equal contribution
1Our best result with ELECTRA (large) and ELECTRA

(base) put us in the first and second rank on the leaderboard,
respectively.

in-depth medical expertise, previous works (Sarker
et al., 2015) have attempted to automate the
process by modelling the grading system with
n-gram language model via SVM (Molla and
Sarker, 2011) and ensemble method (Gyawali
et al., 2012).

In this work, we focus on investigating the util-
ity of various modern pretrained language models
for modelling the evidence grading system in the
medical literature. Although transformer (Vaswani
et al., 2017) and pretrained language models such
as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) have achieved impressive performance
across various NLP tasks (Wang et al., 2018; Wang
et al., 2019) and languages (Koto et al., 2020; Mar-
tin et al., 2020), we hypothesize that such evi-
dence grading task is still challenging because of
three reasons. First, in-depth medical expertise
and knowledge are not always present in the lan-
guage models. Second, it is very likely that ma-
chine learning models suffer from high variance
as disagreement in assessing scientific literature is
natural, even among the experts. Lastly, obtaining
high-quality training data for this task is difficult,
and the large transformer-based models potentially
suffer from overfitting if the available data is lim-
ited.

To address the aforementioned challenges, we
use three main strategies. First, we fine-tune
domain-specific pretrained models (Gu et al., 2020)
that are optimized for medical literature. Previous
works (Gururangan et al., 2020; Gu et al., 2020;
Alsentzer et al., 2019; Fang et al., 2021; Koto
et al., 2021) have shown that such models contain
domain-specific knowledge that can boost system
performance. Second, we argue that discourse is
prominent for this task because each of three SORT
classes might have different document structure.
For instance, patient-oriented literature and consen-
sus guidelines potentially are written differently in
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00667 A 10796398 11508437
00668 A 9036306
00669 C 7391096 11204962 7790481 6863528
00670 B 9569395 12069675
00671 B 11083602 10875559 15283004

Figure 1: Sample training data from ALTA 2021 shared
task.

terms of flow and discourse. In this work, rather
than employing a complicated discourse parser (Yu
et al., 2018; Koto et al., 2019, 2021), we rely on
modern pretrained language models such as ELEC-
TRA (Clark et al., 2020) that contains a rich latent
discourse representation (Koto et al., 2021). Lastly,
similar to Gyawali et al. (2012), we also perform
ensemble learning to tackle the high variance issue
of models.

2 Dataset

We conduct our experiments based on the ALTA
2021 shared task2 which aims to automatically
grade evidence in the medical literature. The grad-
ing system follows the SORT framework (Ebell
et al., 2004) with three classes: A (Strong), B (Mod-
erate) and C (Weak).

As shown in Figure 1 each line in the train-
ing data is a single piece of evidence and con-
sists of an ID, a SORT grade, and a list of re-
source/publication ID(s) from PubMed.3 Each pub-
lication ID is mapped to an XML file containing
bibliographic information (e.g. title, author, affili-
ation, etc.), abstract, and some meta-data such as
type and status of the publication.

In Table 1, we present overall statistics of the
train, development and test sets. First, nearly 45%
of the train and development data are classified
as class B. We also found there is no significant
difference in terms of the number of resources and
words between each subset.

3 Proposed Methods

Figure 2 describes the best model that we submit to
ALTA 2021 shared task. We use filtered ensemble
method over 3 domain-specific pretrained language
models: 1) Biomed BERT (Gu et al., 2020), 2)
Biomed RoBERTa (Gururangan et al., 2020) and
3) Biomed RoBERTa that is further pretrained with
the training set for 400 epochs, denoted as Task

2https://www.alta.asn.au/events/
sharedtask2021/index.html

3https://pubmed.ncbi.nlm.nih.gov/

Train Dev Test

Evidences 677 178 183
in A 212 48 -
in B 311 80 -
in C 154 50 -

Ave. resources per evidence 2.4 2.5 2.3
Ave. words per abstract 269.9 262.6 274.1
Ave. words per evidence 655.9 653.7 643.9

Table 1: Overall statistics of the ALTA 2021 shared
task dataset. Evidence classes in test dataset are with-
held by the organizer. “Ave. resources per evidence”
means the average number of XML files the evidence
has. “Ave. words per abstract” means the average num-
ber of words per single abstract. “Ave. words per ev-
idence” means the average number of words per evi-
dence, including journal name, title and abstract.

Adaptive Pretraining (TAPT) model; and 3 domain-
generic pretrained language models: 1) RoBERTa
(Liu et al., 2019), 2) ELECTRA, and 3) ELEC-
TRA (large) (Clark et al., 2020). The selection of
RoBERTa and ELECTRA is based on their rich
latent discourse representation as reported by Koto
et al. (2021).

Given a list of resources or publications R =
{r1, r2, .., rn} for evidence x, we construct an in-
put sequence as follows. First, each resource ri
consists of journal name ji, title ti, and abstract ai.
We form an input sequence x as the concatenation
of all texts j1 ⊕ t1 ⊕ a1 ⊕ ...⊕ jn ⊕ tn ⊕ an. We
truncate a resource ri if the tokens are more than
250, and set the maximum length of the input x to
be 512.

To understand the variance of pretrained lan-
guage models in this task, we fine-tune each model
with 100 different random seeds. For ensemble
learning, we first select models with accuracy more
than hyper-parameter α (values range between 0
and 1) and apply two types of voting mechanism
to aggregate the prediction: 1) simple voting based
on majority classes, and 2) filtered voting. For the
second approach, if the selected n models have an
even class distribution, we set class B as the predic-
tion, otherwise normal majority voting is applied.
Mathematically, this even prediction is determined
based on a threshold β as follows:

1

3
(|yA − yB|+ |yA − yC |+ |yB − yC |) ≤ β

where yA, yB , yC are the occurrence of class A, B,
and C in n models prediction, respectively (mean-
ing yA+yB+yC = n), and |yA−yB| indicates the
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Journal1 Title1⨁ Abstract1⨁ .... Journaln Titlen⨁ Abstractn⨁

Biomed RoBERTa Biomed RoBERTa 
(TAPT) RoBERTa ELECTRA

x100 x100 x100 x100

100 models 100 models 100 models 100 models

Model Filtering

Ensemble (Vote)

Biomed BERT ELECTRA 
(large)

100 models100 models

x100x100

Figure 2: Filtered ensemble model used in this task.

absolute difference of class A and B occurrence. β
is a hyper-parameter with values ranging between
0 and n, and β < 0 means normal majority voting
is applied. All parameters (including α and β) are
tuned based on the development set.

4 Experiments

4.1 Set-up

We use the huggingface Pytorch framework (Wolf
et al., 2020) for the experiments.4 In total, there
are 6 models: 1) Biomed BERT,5 2) Biomed
RoBERTa,6, 3) Biomed RoBERTa (TAPT), 4)
RoBERTa,7 5) ELECTRA,8 6) ELECTRA (large).9

Each model is fine-tuned for 20 epochs with a batch
size of 10, warm-up of 10% of the total steps, learn-
ing rate of 5e–5, Adam optimizer with epsilon of
1e–8, and early stopping with patience of 5.

In this work, accuracy is used as the primary
evaluation metric, following ALTA 2021 shared
task description.

4.2 Results over Development Set

In Table 2, we report the aggregate score (mean,
max, min, std) of 100 runs of each models. First,
we observe that Biomed RoBERTa has the highest
average performance of 59.5, but only 0.3 higher
than ELECTRA. In fact, Domain-generic mod-
els such as RoBERTa and ELECTRA outperform
Biomed BERT and Biomed RoBERTa (TAPT), de-
spite their domain/task-adaptive pretraning. We
also found that even with 100 different random

4https://huggingface.co/
5microsoft/BiomedNLP-PubMedBERT-base-

uncased-abstract-fulltext
6allenai/biomed roberta base
7roberta-base
8google/electra-base-discriminator
9google/electra-large-discriminator

Model Accuracy

Mean Max Min Std

Biomed BERT 58.7 66.9 52.8 2.9
Biomed RoBERTa 59.5 67.4 55.1 2.5
Biomed RoBERTa (TAPT) 58.3 65.7 52.8 2.6

RoBERTa 59.1 64.6 53.9 2.2
ELECTRA 59.2 65.7 44.9 3.6
ELECTRA (large) 53.3 64.6 44.9 6.7

Table 2: Experiment results on development set over
100 different random seeds.

seeds, all models still have relatively high variance
(std) with more than 2 points. ELECTRA (large)
suffers worst from this issue, compared to the other
models.

In Table 3, we describe the main experiment re-
sults. For baselines, we run unigram and bigram
representation with Naive Bayes and Logistic Re-
gression, and found the results are less optimal.
For the ensemble method, we perform grid search
over α ∈ {0.60, 0.61, 0.62, 0.63, 0.64, 0.65} and
β ∈ {−1, 0, .., n}. n is number of models after fil-
tered by parameter α. Ensemble results presented
in Table 3 use the best combinations of α and β.

First, we perform ensemble method with all
500 “base” models from Table 2, and obtain accu-
racy of 69.7, 2 points higher than the best Biomed
RoBERTa model (max in Table 2). 8 selected mod-
els after filtering with α are 2 Biomed RoBERTa, 2
Biomed RoBERTA (TAPT), 2 Biomed BERT, and
2 ELECTRA. In the next results, we also perform
a grid search for each 6 pretrained language mod-
els (each initially has 100 models), and found that
ELECTRA performs best with an accuracy of 70.2,
outperforming all domain-specific models.

Another thing to note is that parameter β or fil-
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Model Hyper-parameters Filtered models (n) Acc.
α β

Baseline

Naive Bayes (unigram+bigram) – – – 46.1
Logistic Regression (unigram+bigram) – – – 51.1

Ensemble method

All 500 “base” models 0.65 {−1, 0, 1} 8 69.7
Biomed BERT 0.62 {−1, 0, 1, 2, 3} 11 68.5
Biomed RoBERTa 0.63 2 7 67.4
Biomed RoBERTa (TAPT) 0.62 4 11 66.3
RoBERTa 0.64 {−1, 0, 1} 3 67.9
ELECTRA 0.63 {−1, 0, 1} 6 70.2
ELECTRA (large) 0.61 {−1, 0, 1, 2, 3, 4, 5} 18 67.4

Table 3: Results of baseline vs. ensemble methods on the development set. Parameter α and β are selected based
on the grid search.

Model Accuracy

Dev Test

All 500 “base” models 69.7 49.7
ELECTRA 70.2 50.2
ELECTRA (large) 67.4 53.6

Table 4: Results of selected model (for shared task sub-
mission) on the development and test set.

tered voting mechanism is not significant except
for Biomed RoBERTa. From Table 3 we can see
that the optimal combinations of α and β for 5 en-
semble models have β = −1, which indicates that
the standard majority voting solely can yield the
optimal result.

4.3 Results over Test Set

We pick the three best models for ALTA 2021
shared task submission as shown in Table 4. These
models are the ensemble methods from Table 3:
1) All 500 “base” models, 2) ELECTRA, and 3)
ELECTRA (large). We observe that the gap be-
tween development and test set is high, roughly 20
points, which can be due to overfitting problems
and small training sets. The best models on the test
set are ELECTRA and ELECTRA (large) with the
accuracies of 50.2 and 53.6, respectively. Our best
result with ELECTRA (large) put us in the first
rank on the leaderboard.10

10The committee limits three submissions for each team.
At the end of the competition, ELECTRA result with accuracy
50.2 is picked and put us in the second rank.

0

25

50

75

100

125

A B C

Gold Dev Pred Dev Pred Test

Figure 3: Label distributions on development and test
set using ELECTRA (large).

5 Discussions and Conclusion

Figure 3 describes label distributions on develop-
ment and test sets using our best model, ELECTRA
(large). First, we found that the model tends to pre-
dict class B on the development, with a disparity of
+23 instances with the gold label B. In contrast, the
model only classifies 31 instances as class C, de-
spite being there 50 gold labels C. Lastly, our final
prediction in the test sets has a ratio of 40:109:34 of
class A:B:C, respectively, and the graph in Figure 3
describes a similar shape with the development set
prediction.

In conclusion, we have shown in this experiment
that grading evidence in the medical literature is a
challenging task, and modern pretrained language
models suffer from high-variance issues. Inter-
estingly, we found that ELECTRA, the domain-
general models outperform domain-specific models
through ensemble methods. We argue that this is
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because discourse is one of the relevant features for
this task. This is in line with Koto et al. (2021) that
has shown that the last layer of ELECTRA contains
the richest latent discourse representation, com-
pared to BERT, RoBERTa, ALBERT (Lan et al.,
2019), GPT2 (Radford et al., 2019), BART (Lewis
et al., 2020), and T5 (Raffel et al., 2019).
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